
Crash Course in DSP

January 30, 2025

1 Signal Decomposition Using Sines & Cosines

1.1 Linear Regression

-4 -3 -2 -1 0 1 2 3 4
-1

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

Error Function
Degree 11 Polynomial Fit
Degree 10 Polynomial Fit

Figure 1: Polynomial interpolation of the error
function (integral of Gaussian).

You’re probably familiar with the concept of linear regression, in
which we try to find a “best fit” line to match some data we have
collected. Microsoft Excel calls this best fit line a trendline. We don’t
need to limit ourselves to a linear best-fit: we can also use higher
order polynomials (like quadratics and cubics, etc). In general, the
polynomial fit function g(t) can be expressed as:

g(t) = a0t
0 + a1t

1 + a2t
2 + ...

Where the aks are chosen to fit our empirically-gathered data. We can
use summation notation to express this same equation in shorthand:

g(t) =

M−1∑
k=0

akt
k

People have proposed various methods for calculating the ak co-
efficients: the Taylor/McLaurin series, least squares, etc. In any case, we are expressing an unknown function g(t) in terms
of a sum of known functions (monomials tk). We call the known functions the “basis functions,” and we say that we are
expanding g(t) in the basis of monomials. Figure 1 shows polynomial interpolation of the “error function,” which is the

integral of the Gaussian (e−x
2

)1. In the figure, I have plotted two different polynomial interpolations: one of degree 10, and
one of degree 11. There are a couple of shortcomings with polynomial interpolation that make them badly behaved in a lot
of important cases, all of which arise from the fact that the individual terms in the polynomial—x, x2, x3, etc.—are similar
to one another.

Table 1.1 shows the values of the coefficients for each polynomial in Figure 1. While there are some similarities—even-
numbered terms have coefficients of zero, for example—these are clearly two different polynomials. Importantly, we cannot
just truncate the degree 11 polynomial by one coefficient to get the optimal coefficients for the degree 10 polynomial. The
truncated degree 11 polynomial diverges a lot from the degree 10 polynomial. So if we want to change the number of terms
in our polynomial interpolation, we need to recalculate the coefficients on each term.

In this lecture series, we are going to expand functions in a different basis set (the basis of sines and cosines, not
monomials). This Fourier basis has the property that each term in the expansion is independent, so adding and removing
higher-order terms does not affect the coefficients on any of the other terms. This independence or orthogonality property is
the crux of digital filtering. We will expand a function in the Fourier basis then truncate the sum to remove noise which is
usually present in the higher-order terms. The noise-reduced signal can then be reconstructed from the truncated sum.

1.2 Fourier Series

1Since there is no closed-form representation of the error function, we might want to use a polynomial interpolation to quickly evaluate it or
manipulate it.

1

Term Deg 11 Deg 10

0 0 0
1 1.03 0.964
2 0 0
3 −0.221 −0.162
4 0 0
5 0.029 0.015
6 0 0
7 −0.002 −6.3× 10−4

8 0 0
9 6.58× 10−6 9.7× 10−6

10 0 0
11 −8.42× 10−7

Table 1: Coefficients of the polynomials
plotted in Figure 1.

The idea of the Fourier Series is similar to linear regression, except
that we use sines and cosines as the basis functions instead of monomi-
als. There are a lot of good reasons for doing this which we can dis-
cuss later. First, let’s figure out how to calculate ak coefficients for
the Fourier Series. Before we do that though, we need a couple of
tricks:

Trick 1: You can take the scalar product of two periodic functions by mul-
tiplying them together and integrating over one period:

〈f(t), g(t)〉 =

∫
T

f(t)g(t)dt

A bit more explanation The scalar product of functions is kind of like
the dot product of vectors: it is a measure of similarity between the two
functions. If the scalar product is large positive, it means that the functions
are very similar. If it is zero or close to zero it means that the functions are
not similar. Functions (or vectors) that have a scalar product of zero are said
to be orthogonal.

Trick 2: Sines (and cosines) that have different frequencies are orthogonal. For example, we can say that:

〈sin(2πt), sin(4πt)〉 =

∫ π

−π
sin(2πt)sin(4πt) = 0

See §7.1 for a proof.
Trick 3: Euler’s Identity Some smart person noticed a striking similarity in the Taylor Series for sinθ, cosθ, and eθ:

sinθ =

∞∑
n=1

(−1)n−1 θ2n−1

(2n− 1)!
= θ − θ3

3!
+
θ5

5!
− θ7

7!
+ ...

cosθ =

∞∑
n=0

(−1)n
θ2n

(2n)!
= 1− θ2

2!
+
θ4

4!
− θ6

6!
+ ...

eθ =

∞∑
n=0

θn

n!
= 1 + θ +

θ2

2!
+
θ3

3!
+
θ4

4!
+
θ5

5!
+ ...

Notice that the Taylor series for eθ contains the same terms as the Taylor series for sinθ and cosθ, but the singns on the
alternating terms are incorrect. We can get the signs to alternate in the Taylor Series expansion of the exponential function
by multiplying its argument by the imaginary number i:

eiθ =

∞∑
n=0

(iθ)n

n!
= 1 + iθ − θ2

2!
− iθ3

3!
+
θ4

4!
+
iθ5

5!
− θ6

6!
− iθ7

7!
+ ...

Which yields the Euler identity:

eiθ = cosθ + isinθ (1)

2 Calculating the Fourier Series Coefficients

2.1 A Simplified Version of the Fourier Series

We are claiming that like linear regression, we can expand any arbitrary function in the basis of sines and cosines:

g(t) =

M−1∑
k=0

aksin(2πkft) = a0sin(0t) + a1sin(2πft) + a2sin(4πft) + a3sin(6πft) + ...

2

Each term in this sum is a sine wave that oscillates at a multiple of the fundamental frequency f . Figure 2 shows the
first four terms in this expansion with f = 1. To make this expansion work, we need to calculate the expansion coefficients.

g(t) =

M−1∑
k=0

aksin(2πkft)

Now, we will invoke Trick 2, multiplying both sides by a sine with frequency 2πfm and integrating over one period:∫
T

g(t)sin(2πmft)dt =

∫
T

M−1∑
k=0

aksin(2πkft)sin(2πmft)dt =

M−1∑
k=0

ak

∫
T

(sin(2πkft)sin(2πmft)) dt

According to Trick 2, the integral on the right hand side is zero unless m = k, so we can eliminate all but one terms
from the sum. ∫

T

g(t)sin(2πmft)dt = am

∫
T

sin2(2πmt)dt

The right-hand-side integral is equal to T/2:

am =
2

T

∫
T

g(t)sin(2πmft)dt (2)

0 π 2π
-1

0

1
sin(0 π t)

0 π 2π
-1

0

1

0 π 2π
-1

0

1

0 π 2π
-1

0

1

sin(2 π t)

sin(4 π t)

sin(6 π t)

Figure 2: The first four basis functions in the
Fourier series with f = 1.

-8π -6π -4π -2π 0 2π 4π 6π 8π
-1.5

-1

-0.5

0

0.5

1

1.5

Figure 3: Square wave.

Example: Square Wave

am =
2

T

∫
T

s(t)sin(mt/T)dt

=
1

π

∫ π

0

sin(mt)dt− 1

π

∫ 2π

π

sin(mt)dt

3

a1 =
1

π

∫ π

0

sin(t)dt− 1

π

∫ 2π

π

sin(t)dt

=
1

π

[
(−cos(t))

∣∣∣∣π
0

+ (cos(t))

∣∣∣∣2π
π

]

=
1

π
[2 + 2] =

4

π

a2 =
1

π

∫ π

0

sin(2t)dt− 1

π

∫ 2π

π

sin(2t)dt

=
1

2π

[
(−cos(2t))

∣∣∣∣π
0

+ (cos(2t))

∣∣∣∣2π
π

]

=
1

2π
[−(1− 1) + (1− 1)] = 0

a3 =
1

π

∫ π

0

sin(3t)dt− 1

π

∫ 2π

π

sin(3t)dt

=
1

3π

[
(−cos(3t))

∣∣∣∣π
0

+ (cos(3t))

∣∣∣∣2π
π

]

=
1

3π
− [cos(3π)− cos(0)] + [cos(6π)− cos(3π)]

=
1

3π
[−(−1− 1) + 1− (−1)]

=
4

3π

a5 =
1

π

∫ π

0

sin(5t)dt− 1

π

∫ 2π

π

sin(5t)dt

=
1

5π

[
(−cos(5t))

∣∣∣∣π
0

+ (cos(5t))

∣∣∣∣2π
π

]

=
1

5π
− [cos(5π)− cos(0)] + [cos(10π)− cos(5π)]

=
1

5π
[−(−1− 1) + 1− (−1)]

=
4

5π

am =
1

π

∫ π

0

sin(mt)dt− 1

π

∫ 2π

π

sin(mt)dt

=
1

mπ

[
(−cos(mt))

∣∣∣∣π
0

+ (cos(mt))

∣∣∣∣2π
π

]

=
1

mπ
− [cos(mπ)− cos(0)] + [cos(2mπ)− cos(mπ)]

=
1

mπ
[−2cos(mπ) + 1 + cos(2mπ)]

=

{
4/mπ m odd

0 m even

4

-8 -6 -4 -2 0 2 4 6 8
-1

-0.5
0

0.5
1

k = 1

-8 -6 -4 -2 0 2 4 6 8
-1

-0.5
0

0.5
1

k = 3

-8 -6 -4 -2 0 2 4 6 8
-1

-0.5
0

0.5
1

k = 5

-8 -6 -4 -2 0 2 4 6 8
-1

-0.5
0

0.5
1

k = 7

-8 -6 -4 -2 0 2 4 6 8
-1

-0.5
0

0.5
1

k = 101

Figure 4: Squre wave.

Example: Sawtooth Wave We
will compute the Fourier Series coef-
ficients for the 2π-periodic sawtooth
wave s(t) shown in Figure 5 by start-
ing with Equation 4. One period of
this function goes from [−π, π], and
its value on that interval is s(t) =
t/π.

am =
2

T

∫
T

s(t)sin(2πmt/T)dt

=
1

π

∫ π

−π
(t/π)sin(mt)dt

Using integration by parts, let
u = t, du = dt, dv = sin(2πmt

T) =
sin(mt), and v = − 1

mcos(mt).

am =
1

π2

(
uv

∣∣∣∣π
−π
−
∫ π

−π
vdu

)

=
1

π2

(
− t

m
cos(mt)

∣∣∣∣π
−π

+
1

m

∫ π

−π
cos(mt)dt

)

=
1

π2

(
− π
m
cos(mπ)− π

m
cos(−mπ)

)
= − 2

mπ
cos(mπ)

Note that cos(mπ) alternates be-
tween +1 and −1. If we want to
expand the sawtooth function using
the am coefficients calculated above:

s(t) =
2

π
sin(t)− 1

π
sin(2t)+

2

3π
sin(3t)− 2

4π
sin(4t)+

2

5π
sin(5t)− 2

6π
sin(6t)+...

-4π -3π -2π -π 0 π 2π 3π 4π-1

-0.5

0

0.5

1
s(t)

t

Figure 5: Sawtooth wave.

Figure 6 shows plots of approximations of s(t) where this sum has
been truncated to a few terms. As we add more terms to the sum,
the approximation of the original sawtooth wave becomes better. If
we include an infinite number of terms in the sum, the Fourier Series
approximation will perfectly match the ideal sawtooth wave.

Another way to vizualize the Fourier Series is by plotting only
the values of am, the coefficients of the basis functions in our sum.
This kind of plot shows the relative contributions of each frequency
component to the approximation. Figure 7 shows the values of the
Fourier Series coefficients am for our sawtooth wave. This is what we
call the frequency spectrum of the function s(t).

In the frequency spectrum of s(t), the lower frequency components
are dominant, meaning that they are larger in absolute value and they
make a greater contribution to the overall approximation. If we want
to save memory, we can truncate the sum and save only a subset of
the am coefficients. We would want to make sure to save the largest-valued coefficients because those are the ones that make
the most contribution to the overall sawtooth wave approximation.

5

-1

0

1

-1

0

1

-1

0

1

-1

0

1

0 π 2π 3π 4π
-1

0

1

One Term

Two Terms

�ree Terms

Four Terms

20 Terms

Figure 6: Sawtooth wave.

2.2 Fourier Series for General Functions

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 10 20 30 40 50 60 70 80 90 100
m

am

Figure 7: Fourier Series coefficients for the sawtooth wave approximation.

In the last section, we represented
our target function as a sum of
sine waves only. We could do this
because our target function (the
sawtooth wave) is—like the sine
function—antisymmetric about x =
0. We call these kinds of antisym-
metric functions odd functions.

There are also even functions—
like the cosine function—that are
symmetric about t = 0. Even func-
tions can be represented as a sum of
cosines only (no sines).

In general, most functions are
not symmetric or antisymmetric
about t = 0. In order to represent
a general function in the Fourier Se-
ries, we need both sines and cosines.

g(t) =

∞∑
m=0

amsin(2πmt/T)+bmcos(2πmt/T)

We will take advantage of the following two trig identities:

cos(t) = eit+e−it

2 sin(t) = eit−e−it

2i

6

1 c l ea r , c l o s e a l l ;
2 N = 20 ; % Max number o f approximation c o e f f i c i e n t s
3 a = 1 :N;
4 n = 1 :N;
5 a = −(2./(p i ∗n)) .∗ cos (n∗ pi) ; % Ca lcu la te approximation c o e f f s as a vec to r .
6

7 % Generate the sawtooth wave . This i s not used to c a l c u l a t e anything , j u s t
8 % to compare our approximation to the i d e a l sawtooth wave in graphs .
9 t = l i n s p a c e (0 ,4∗ pi , 8 0 0) ;

10 s (1 : 2 0 0) = l i n s p a c e (0 . , 1 . , 2 0 0) ;
11 s (201 : 600) = l i n s p a c e (−1 . , 1 . , 400) ;
12 s (601 : 800) = l i n s p a c e (−1. ,0 ,200) ;
13

14 p = 1 ;
15 f = ze ro s (1 , l ength (t)) ; % f ho lds our approximation o f the sawtooth wave
16 f i g u r e ;
17 f o r k = 1 : l ength (a)
18 f = f + a (k) ∗ s i n ((k) ∗ t) ; % Add a term to f
19 i f ((k >= 1) && (k <=4)) | | (k == length (a))
20 % Plot the f i r s t f our and l a s t approximations o f the sawtooth wave
21 subplot (5 , 1 , p) ;
22 hold on ;
23 p lo t (t / pi , f) ;
24 p lo t (t / pi , s , ’−− ’) ;
25 p = p + 1 ;
26 end
27 end
28

29 % Plot the f requency spectrum
30 f i g u r e ;
31 stem (a) ;

Figure 8: MATLAB code used to generate plots for the sawtooth wave approximation.

7

g(t) =

∞∑
m=0

amsin(2πmt/T) + bmcos(2πmt/T)

=

∞∑
m=0

am

(
ei2πmt/T − e−i2πmt/T

2i

)
+ bm

(
ei2πmt/T + e−i2πmt/T

2

)

=

∞∑
m=0

am
2i
ei2πmt/T − am

2i
e−i2πmt/T +

bm
2
ei2πmt/T +

bm
2
e−i2πmt/T

=

∞∑
m=0

−ami
2

ei2πmt/T − −ami
2

e−i2πmt/T +
bm
2
ei2πmt/T +

bm
2
e−i2πmt/T

=

∞∑
m=0

(
bm − ami

2

)
ei2πmt/T +

(
bm − ami

2

)
e−i2πmt/T

We can now split these two terms in the sum into two separate sums and enforce the rule that bn = b−n and an = −a−n.

g(t) =

∞∑
m=1

(
bm − ami

2

)
ei2πmt/T +

0∑
m=−∞

(
b−m − a−mi

2

)
ei2πmt/T

=

∞∑
m=1

(
bm − ami

2

)
ei2πmt/T +

0∑
m=−∞

(
bm − ami

2

)
ei2πmt/T

=

∞∑
m=−∞

(
bm − ami

2

)
ei2πmt/T

=

∞∑
m=−∞

cme
i2πmt/T

The final form of the equation gives the standard form in which people usually express the Fourier Series. The coefficients
cm are computed by finding the inner product between

2.3 Inverse Transform

We’ve already kind of talked about this, but it’s worth making it explicit. A couple of facts about the Fourier Transform:

• The frequency spectrum of a signal is a complex-valued function that represents its frequency components. The “forward
transform” is the calculation of the complex-valued cm coefficients from the time-domain signal.

• The frequency spectrum of a signal contains a unique representation of the signal, meaning that we can uniquely
reconstruct the time domain signal from its frequency spectrum. This reconstruction is called the inverse transform.
The inverse transform is the calculation of the time-domain signal from the set of complex-valued cm coefficients.

Forward transform:

cm =
1

T

∫
T

g(t)e−i2πnt/T dt (3)

Inverse transform:

g(t) =

∞∑
m=−∞

cme
i2πmt/T (4)

2.4 Different Kinds of Fourier Transforms

In Equation 4, we are enforcing the rule that the frequency components of our signal must be discrete multiples of the
fundamental. This imposes the assumption that our time domain signal is periodic. What if we convert the sum in Equation
4 to an integral? Doing so will allow us to frequency components in the frequency spectrum of any frequency, not just
multiples of the fundamental. This gives us a continuous frequency spectrum.

8

Property Name Equation

Linearity Af(t) +Bg(t)
F←→ AF (Ω) +BG(Ω)

Time Shift f(t− t0)
F←→ e−iΩt0F (Ω)

Modulation (Frequency Shift) e−iΩ0tf(t)
F←→ F (Ω− Ω0)

Conjugation F (Ω) = F ∗(−Ω) iff f(t) is real-valued

Differentiation d
dtf(t)

F←→ iΩF (Ω)

Convolution
f(t) ∗ g(t)

F←→ F (Ω)F (Ω)

f(t) ∗ g(t)
F←→ F (Ω)F (Ω)

2.4.1 Fourier Transform

The Fourier Transform is a modification of the Fourier Series in which the frequency domain is considered to be continuous:

G(ω) =

∫ ∞
−∞

g(t)e−i2πtf/T dt (5)

g(t) =

∫ ∞
−∞

G(ω)ei2πtf/T dω (6)

In general, functions that are periodic in one domain are discrete in the other domain, and functions that are aperiodic
in one domain are continuous in the other domain.

Fourier Transform Fourier Series
• Continuous and Aperiodic in Time • Continuous and Periodic in Time
• Continuous and Aperiodic in Frequency • Discrete and Aperiodic in Frequency
Discrete Time Fourier Transform Discrete Fourier Transform
• Discrete and Aperiodic in Time • Discrete and Periodic in Time
• Continuous and Periodic in Frequency • Discrete and Periodic in Frequency

Although these transforms deal with different kinds of functions (discrete/continuous and periodic/aperiodic), they gen-
erally accomplish the same task of converting between a real-valued time-domain signal and a complex-valued frequency
spectrum. In digital signal processing, we work exclusively with the discrete Fourier Transform because it is discrete in both
domains. This allows us to represent the values of the signal in an array.

3 Properties of the Fourier Transform

3.1 Computing the Fourier Transform of a Periodic Signal

Generally, if we have a periodic signal in the time domain, we would use the Fourier Series to represent the signal in
the frequency domain. But signal analysis using the Fourier Series can be nonintuitive because the frequency domain is
parameterized by m—the x-axis of the Fourier Series. The parameter m tells us which basis function we are using. It does
not tell us the frequency of the basis function, which is usually what we care about. If we see a feature we are interested in
on the Fourier Series frequency spectrum, it can be difficult to determine what frequency that feature corresponds to. The
Fourier Transform is more useful because the x-axis represents frequency in Hertz.

x(t)
FS;Ω0←−−→ X[k] =

1

T

∫ T

0

x(t)e−iΩ0ktdt

X(Ω) = 2π

∞∑
k=−∞

X[k]δ(Ω− kΩ0) (7)

where Ω0 = 2π
T .

9

3.2 Convolution

Convolution of two functions g(t) and h(t) is defined in the following way:

g(t) ∗ h(t) =

∫ ∞
−∞

g(τ)h(t− τ)dtτ

Let’s take the Fourier transform if this convolution and see what happens:

g(t) ∗ h(t) =

∫ ∞
−∞

g(τ)h(t− τ)dtdτ

=

∫ ∞
−∞

∫ ∞
−∞

g(τ)h(t− τ)dτei2πftdt

Now we will substitute w = t− τ , dw = dt, t = τ + w:

=

∫ ∞
−∞

∫ ∞
−∞

x(τ)h(w)ei2πf(τ+w)dtdτ

=

(∫ ∞
−∞

x(τ)ei2πfτdτ

)(∫ ∞
−∞

h(w)ei2πfwdw

)
= G(f)H(f)

So convolution of the time-domain functions causes multiplication of the frequency-domain functions. The same is true
in reverse: convolution of the frequency domain functions is the same as multiplication of the time-domain functions.

4 Sampling

4.1 Dirac Delta Function

Dirac’s delta function is defined as a limiting case of the pulse p(t) shown in Figure 9. The total area of the rectangle p(t) is
1. Dirac’s delta function is the function you get in the limit as ∆ → 0: it has a width of 0, infinite height, and a total area
of 1.

4.1.1 Sifting Property

p(t)

∆

1/∆

t

Figure 9: Square pulse function.

The sifting property basically says that Dirac’s delta function multiplied by any other
arbitrary function f(t) under an integral “picks out” the value of f(t):

∫ ∞
−∞

δ(t)f(t)dt =

∫ ∞
−∞

δ(t)f(0)dt

= f(0)

∫ ∞
−∞

δ(t)dt

= f(0)

Multiplying by a delta function is the mathematical equivalent of sampling a signal
at t = 0. When we sample a signal an uniform time intervals, we are multiplying my
a train of impulses at equally spaced intervals.

Example: Convolution with a Shifted Delta An extension of the sifting prop-
erty:

δ(t− a) ∗ f(t)dt =

∫ ∞
−∞

δ(τ − a)f(t− τ)dτ

= f(t− a)

10

Example: Train of Pulses Consider the train of pulses s(t) shown in Figure 10. Find the frequency spectrum of this
function. We will begin by calculating the Fourier Series coefficients for s(t).

s(t) =

∞∑
l=−∞

δ(t− lT)

am =
1

T

∫ T/2

−T/2
δ(t)e−iΩ0mtdt =

1

T
(1)

Now plug in the Fourier Series coefficients into Equation 7:

S(Ω) =
2π

T

∞∑
k=−∞

δ(Ω− kΩ0)

s(t)

-T-2T T 2T 3T

Figure 10: Train of pulses s(t).

S(Ω)

-Ω0-2Ω0 Ω0 2Ω0 3Ω0

2π
T()

Figure 11: The frequency spectrum of the train of
pulses s(t).

The pulse train is one of the very few functions that has the same
form in the time and frequency domains. However, the height and
spacing of the impulses changes.

When we sample a continuous time signal f(t), we are multiplying
it by a train of impulses s(t) to pick out the individual values of
the signal at the instants of sampling. The resulting waveform is a
discrete-time signal, meaning that it only has values at discrete times
on the x-axis (see Figure 13 for an example of such a signal). These
discrete values can be stored in an array in the computer’s memory,
and we will discuss techniques of processing them in the next section.

4.2 Consequences of Sampling

Unfortunately, this process of sampling has some undesirable proper-
ties that we need to think about. To see what happens, let’s take the
sampled signal s(t)× f(t):

F {s(t)f(t)} = S(Ω) ∗ F (Ω)

What is happening here is we are taking the frequency spectrum of our original signal F (Ω) and convolving it with the
periodic pulse train shown in Figure 11. We showed above that convolution of an arbitrary function g(t) with a shifted
impulse δ(t− a) causes the function g(t) to be shifted right by a:

g(t) ∗ δ(t− a) = g(t− a)

But the frequency spectrum of our pulse train S(Ω) contains infinitely many equally spaced impulses:

S(Ω) =

∞∑
a=−∞

δ(Ω− aΩ0)

11

G(Ω) ∗ S(Ω) = G(Ω) ∗
∞∑

a=−∞
δ(Ω− aΩ0)

=

∞∑
a=−∞

G(Ω) ∗ δ(Ω− aΩ0)

=

∞∑
a=−∞

G(Ω− aΩ0)

G(Ω)

Ω
G(Ω) ∗ S(Ω)

Ω0-Ω0 2Ω0-2Ω0

B-B

Figure 12: Frequency spectrum of a continuous-
time signal G(Ω) and its discrete-time analog
G(Ω) ∗ S(Ω).

Which gives us the frequency spectrum G replicated at intervals
of Ω0, shown in Figure 12.

4.2.1 The Nyquist Theorem / Shannon Sampling Theorem

I have drawn Figure 12 such that the bandwidth of the continuous-
time signal is much smaller than the sampling frequency Ω0. Everyt-
ing will be fine as long as B < Ω0/2. If B becomes larger than Ω0/2,
the frequency replicas will overlap with one another, distorting the
sampled signal. This overlap is called aliasing. Probably the most
recognizable form of aliasing you’ve likely seen is in car commercials
where the car wheel appears to spin backwards. This happens be-
cause the camera’s frame rate (Ω0) is lower than the rotation speed
of the wheel (B). The wheel goes through more than one revolution
per frame, making it appear to spin backwards.

The admonishion to keep the sampling frequency greater than
twice the bandwidth of the analog signal is called the Nyquist The-
orem or the Shannon Sampling Theorem. In practice, we often put
a simple analog filter called an antialiasing filter between our analog

signal and our analog-to-digital converter to enforce the sampling theorem.

5 Digital Filtering

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-3

-2

-1

0

1

2

Figure 13: A continuous-time signal and its sam-
ples.

In the world of digital filtering, we don’t use integrals to compute
inner products of functions to find the Fourier Series/Fourier Trans-
form coefficients. Instead, we use numerical methods to calculate the
similarity between our digitized signal and the Fourier basis.

First, we sample a signal using an analog-to-digital converter and
store the samples in an array. We must be careful to ensure that our
sampling obeys the Nyquist theorem. The samples must be taken at
uniform time intervals for all this stuff to work.

We then build a basis set, which is a set of complex sinusoids of the
form ei2πft, sampled at the same time intervals as our ADC-acquired
signal. To compute each Fourier coefficient, we calculate the vector
inner product between the sampled signal and each of the discrete
basis functions. Usually we use the same number of basis functions as
samples, and usually that number is a power of 2. This whole thing
works out to a matrix-vector multiplication:

S0

S1

S2

S3

...
SN−1

 =

ei2π0/N ei2π0/N ei2π0/N ... ei2π0/N

ei2π0/N ei2π1/N ei2π2/N ... ei2π(N−1)/N

ei2π0/N ei2π2/N ei2π4/N ... ei2π2(N−1)/N

ei2π0/N ei2π3/N ei2π6/N ... ei2π3(N−1)/N

...

ei2π0/N ei2π(N−1)/N ei2π2(N−1)/N ... ei2π(N−1)2/N

s0

s1

s2

s3

...
sN−1

12

The column vector on the right-hand-side of this equation is the time-domain input signal s[n]. The left-hand-side of this
equation is the discrete-time frequency spectrum of s[n].

5.1 Noise

6 Compressive Sensing

We can represent the FFT operation as a matrix-vector multiplication:

F = Ψf (8)

where Ψ is a matrix in which each row contains samples of the complex sinusoid e−i2πft/T on the interval [0, 2π]. Ψ is a
unitary matrix, which means that its conjugate transpose2 is its inverse:

ΨΨ∗ = I

The Nyquist Theorem provides a lower bound on the spacing of these complex exponentials in frequency given the
maximum frequency of the continuous-time signal. The higher the frequency of the continuous time analog signal, the
smaller spacing of the complex exponentials in Ψ.

However, the Nyquist Theorem assumes that the continuous-time signal is broadband : that is, it contains non-negligible
components of almost all frequencies. This assumption is often not true. We frequently deal with sparse signals in which
many components of Ψ are zero or close to zero.

When we eliminate rows of the Ψ matrix, the system in Equation 8 becomes overdetermined, meaning there are more
equations than unknowns (or more data points than degrees of freedom). Overdetermined systems are often solved with the
method of least squares, which minimizes the square of the deviations between each point and the approximation:

x̂ = min
x

∑
k

||xk − yk||1

Least squares tends to overpenalize large deviations from the mean and favor solutions where all of the components of
the solution have small but nonzero values. This is an undesirable characteristic when we expect solutions to be sparse. To
get a sparse solution, we want a way to force many (or most) components to zero while allowing a few components to be
larger nonzero values.

6.1 Overdetermined Systems

Step 1
f = Ψc (9)

Compute the expansion of fn×1 in basis Ψn×n with loading vector cn×1, which tells us how much each component of Ψ
contributes to the sampled signal. This is the IFFT.

Step 2
b = φf (10)

Where φn×m is a rectangular measurement matrix, which selects a subset of the samples in f . It is basically the identity
matrix with some columns removed. Vector b is measurements of the original signal sampled at sparse intervals. Combining
Equations 9 and 10:

b = φΨc (11)

This is an overdetermined system. We want to solve this system for c subject to the constraint that we minimize ||c||1
because that constraint tends to extract sparse solutions.

2To get the conjugate transpose, we interchange rows and columns and take the complex conjugate of each element. To get the complex
conjugate of a complex exponential, invert the sign of the argument of the exponential: e−ia → e+ia

13

1 c l e a r a l l , c l o s e a l l , c l c
2

3 n = 5000 ;
4 t = l i n s p a c e (0 ,1/8 , n) ;
5 % Signa l f i s the ’A’ tone on touchtone phone
6 f = s i n (1394∗ pi ∗ t) + s i n (3266∗ pi ∗ t) ;
7

8 f i g u r e (1) ;
9 subplot (2 , 1 , 1) ;

10 p lo t (t , f) ;
11

12 % Plot d i s c r e t e c o s i n e trans form o f f .
13 % Kinda l i k e a rea l−only FFT
14 f t = dct (f) ;
15 subplot (2 , 1 , 2) ;
16 p lo t (t , f t) ;
17

18 % Randomly s e l e c t m (< n) random samples o f f
19 m = 500 ;
20 temp = randperm (n) ; % randomly permute i n t e g e r s in range 1 : n
21 ind = temp (1 :m) ; % Choose the f i r s t m randomly permuted po in t s
22 t r = t (ind) ; % t r ho lds the time va lues at the m randomly chosen i n d i c e s
23 % Evaluate func t i on f at the m randomly chosen i n d i c e s
24 f r = s i n (1394∗ pi ∗ t r) + s i n (3266∗ pi ∗ t r) ;
25

26 subplot (2 , 1 , 1) ;
27 hold on ;
28 s c a t t e r (tr , f r) ;
29

30 % Build the b a s i s matrix Psi
31 Psi = dct (eye (n , n)) ;
32

33 % Build A = \phi \Psi , s e l e c t i n g only a subset o f the b a s i s v e c t o r s in Psi
34 A = Psi (ind , :) ;
35

36 %% Bad So lu t i on : Use Least Squares to f i n d c .
37 % x i s an es t imate o f the DCT c o e f f i c i e n t s o f the o r i g i n a l s i g n a l .
38 x = pinv (A) ∗ f r ’ ;
39

40 % Inve r s e DCT to get time−domain es t imate
41 l s e s t i m a t e = dct (x) ;
42

43 f i g u r e (2) ;
44 subplot (2 , 1 , 1) ;
45 p lo t (t , f) ;
46 hold on ;
47 p lo t (t , l s e s t i m a t e) ;
48 t i t l e ’ Least Squares Estimate o f S i gna l ’
49

50 subplot (2 , 1 , 2) ;
51 p lo t (t , f t) ;
52 hold on ;
53 p lo t (t , x) ;
54 t i t l e ’DCT of Least Squares So lu t i on ’
55

14

56 %% Good So lu t i on : Use L1 norm minimizat ion to f i n d c
57

58 [x1 , F i t I n f o] = las sog lm (A, f r ’) ;
59 l 1 e s t i m a t e = dct (x1 (: , 2 5)) ;
60

61 f i g u r e (3) ;
62 subplot (2 , 1 , 1) ;
63 p lo t (t , f) ;
64 hold on ;
65 p lo t (t , l 1 e s t i m a t e) ;
66 t i t l e ’L1 Estimate o f S i gna l ’
67

68 subplot (2 , 1 , 2) ;
69 p lo t (t , f t) ;
70 hold on ;
71 p lo t (t , x1 (: , 2 5)) ;
72 t i t l e ’DCT of L1 So lu t i on ’

7 Appendix

7.1 Proof that Sines of Different Frequencies are Orthogonal

The period of the lower frequency sinusoid is:

ω1 = 2πf1 = 2π/T1

T1 = 2π/ω1

The period of the higher frequency sine wave is a multiple of 2π/ω1. To compute the inner product, we will integrate
over T1 because both sines are periodic on T1.

〈sin(ω1t), sin(kω1t)〉 =

∫ 2π/ω1

0

sin(ω1t)sin(kω1t)dt (12)

=

∫ 2π/ω1

0

1

2
(cos(ω1t− kω1t)− cos(ω1t+ kω1t)) dt (13)

=
1

2

∫ 2π/ω1

0

cos((1− k)ω1t)dt−
1

2

∫ 2π/ω1

0

cos((1 + k)ω1t)dt (14)

=
1

2

[
sin((1− k)ω1t)

(1− k)ω1

]2π/ω1

0

− 1

2

[
sin((1 + k)ω1t)

(1 + k)ω1

]2π/ω1

0

(15)

=
1

2

[
sin((1− k)ω1

2π
ω1

)

(1− k)ω1
− 0

]
− 1

2

[
sin((1 + k)ω1

2π
ω1

)

(1 + k)ω1
− 0

]
= 0 (16)

Since sin(2πk) = 0.

15

