
Using Virtualized Task Isolation to Improve Responsiveness in
Mobile and IoT Software

Neil Klingensmith
University of Wisconsin
naklingensmi@wisc.edu

Suman Banerjee
University of Wisconsin
suman@cs.wisc.edu

ABSTRACT
We present Hermes, a hypervisor for MMU-less microcontrollers.
Hermes enables high-performance bare metal applications to co-
exist with real-time operating systems (RTOSes) and other less
time-critical software on a single CPU. Hermes creates isolated
virtual runtime environments for real-time tasks by adding a layer
of abstraction between the hardware I/O devices and the software
that services them. Virtualization on low-power mobile and em-
bedded systems also enables some interesting software capabilities
like secure execution of third-party apps, online privacy controls,
and bare metal performance in a multitasking software environ-
ment. These features otherwise require additional hardware (i.e.
multiple CPUs, hardware TPM, etc) or may not be available at all.
In other projects, we have anecdotally noticed that RTOSes are
not always able to respond quickly and deterministically enough
to time-sensitive operations, particularly under high I/O load. We
validate this observed timing problem by measuring interrupt la-
tency in an RTOS environment and comparing to an experimental
implementation of Hermes. In our evaluation we compare runtime
performance of several realistic mobile apps on Hermes and FreeR-
TOS. We find that not only is the interrupt latency lower in the
virtualized environment, but it is also much more deterministic—a
key figure of merit for real-time software systems.

CCS CONCEPTS
• Software and its engineering → Virtual machines; • Com-
puter systems organization→Real-time operating systems;
Embedded systems.

KEYWORDS
Real-time systems; hypervisor; virtualization

ACM Reference Format:
Neil Klingensmith and Suman Banerjee. 2019. Using Virtualized Task Isola-
tion to Improve Responsiveness in Mobile and IoT Software. In International
Conference on Internet-of-Things Design and Implementation (IoTDI ’19), April
15–18, 2019, Montreal, QC, Canada. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3302505.3310078

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
IoTDI ’19, April 15–18, 2019, Montreal, QC, Canada
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6283-2/19/04. . . $15.00
https://doi.org/10.1145/3302505.3310078

1 INTRODUCTION
Modern embedded sensing and mobile applications increasingly
perform diverse functions, including displaying user interfaces,
managing networking, performing real-time data acquisition, and
more. Some even allow third-party code to be downloaded and
run alongside the factory firmware [24]. Such diversity in runtime
requirements poses challenges to software architects, who must
manage the often competing needs of different tasks.

To manage the diverse runtime requirements of embedded soft-
ware, we have developed a lightweight embedded hypervisor we
call Hermes 1 , targeted to ARM Cortex-M microcontrollers. Other
authors have proposed similar systems for mobile phone environ-
ments, but none that we are aware of on MMU-less processors
[5, 11, 21].

IoT applications are frequently implemented on CPUs without
an MMU in order to save cost and power. While the cost of MMU-
equipped Linux-capable processors is going down all the time,
energy considerations (especially for mobile applications) are not
likely to go away.

The problem we set out to solve is one of I/O latency in such a
complex runtime environment. Real-time OS scheduling algorithms
cannot guarantee deadlines will be met under high I/O load. People
usually solve this problem by running time-critical operations on a
separate CPU [20]. For example, high-frequency signal sampling
may be implemented in bare metal code running on an indepen-
dent microcontroller while the user interface, networking, storage,
etc. runs on the main device. This approach has a lot of obvious
shortcomings: increased hardware and software complexity, power
consumption, physical size, verification difficulty, etc.

In this context, “real-time” refers to the schedulability of user-
level code—the OS has no ability to schedule interrupt service rou-
tines triggered by asynchronous I/O events [19], which aremanaged
by the CPU hardware and interrupt controller. The RTOS can re-
order the processing of interrupt service routines, but it cannot
prioritize user-mode code above ISRs; as we will see, it is this lack
of flexibility that causes non-deterministic I/O latency.

Driver-level I/O processing has traditionally been assumed to be
a negligible component of overall response time—an assumption
that was valid 30 years ago as these real-time scheduling algo-
rithms were being developed. At that time, embedded computers
were single-purpose machines that largely performed the same task
repetitively.

But that assumption of single-purposeness is becoming less valid.
Modern microcontrollers are equipped with a rich set of peripherals
that was unimaginable in the 1980s.Network interfaces, high-speed
data acquisition devices, touchscreens, and more all have a diverse

1HypErvisor for Real timeMicrocontrollErS
http://hermes.wings.cs.wisc.edu

160

https://doi.org/10.1145/3302505.3310078
https://doi.org/10.1145/3302505.3310078
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3302505.3310078&domain=pdf&date_stamp=2019-04-15

High-Priority ISR Low-Priority ISR

(a)

(b)

High-Priority ISR High-Priority
User-Mode Processing

High-Priority
User-Mode Processing

Figure 1: Timeline of (a) high-priority ISR followed by user-
mode I/O processing and (b) low-priority ISR co-occurring
with a high-priority ISR, delaying high-priority user mode
processing.

range of requirements, but they are treated the same by the RTOS
and CPU. Exception management for low-priority I/O is always
performed before user-mode code can respond to high-priority
events, creating a kind of unintended priority inversion (depicted
in Figure 1). Consequently, response times to latency-sensitive
I/O events are not deterministic, which can result in failure. We
explored this problem in [15].

Conventional wisdom among real-time programmers is that ISRs
should be as short as possible: clear the interrupt, maybe transfer a
few bytes of data, and exit. Userland code should be responsible for
responding to the event. In a crowded software environment with
multiple drivers and tasks competing for CPU time, this program-
ming method has the effect of delaying the actual response of all I/O
events until all ISRs have finished executing. These delays break the
assumptions that underlie real-time scheduling algorithms, which
require the highest-priority task to always run first. Instead, we
are running the driver code associated with low-priority tasks be-
fore the user code for high-priority tasks, and RTOSes do not have
flexibility to change this behavior.

Hermes is a lightweight virtualization platform that lives be-
tween the hardware and the operating system. At its core, Her-
mes consists of some initialization code and a single interrupt ser-
vice routine that catches and preprocesses all exceptions before
dispatching them to the operating system. In its role as a mediator of
exception processing, Hermes can allowmultiple operating systems
or bare metal applications to run side-by-side on an MMUless mi-
crocontroller, dispatching exception processing to the appropriate
OS as necessary, much like a hypervisor running on a PC or server.
We see several potential advantages to this software architecture:

(1) Performance. For time-critical applications, Hermes can
provide a thin layer between the software and the hardware.
Real time operating systems (RTOSes) on the other hand,
often come with a lot of overhead in the form of system call
latency for time-critical tasks. This may be unacceptable in
applications where time-critical tasks need to coexist with
other less critical code like networking or user interface
software.

(2) Privacy. Because it lives between the hardware and the app,
Hermes is in a unique position to intercept and anonymize
personal data, coded in I/O transactions. We are exploring
this topic in another line of work [16].

(3) Portability. Hermes can provide a consistent virtual en-
vironment for all higher level software, regardless of the
underlying hardware. This could enable, for example, edge

computing devices with heterogeneous hardware implemen-
tations to run user apps targeted to a common platform.

A diagram of the Hermes software architecture is shown in Fig-
ure 3. We are implementing Hermes on an ARM Cortex M7 CPU
called the Atmel SAM E70 [6, 7] which has 2 Mbytes of flash and
384 kbytes of RAM. The ARM Cortex M7 core uses an instruction
set called Thumb-2, which is a simplified version of the ARM in-
struction set, allowing most instructions to be encoded in 16 bits.
Other Cortex-M cores (M3, M4, etc.) also use the Thumb-2 instruc-
tion set and have a similar programmer-visible architecture, which
should make it possible to port Hermes to these other models. It
also includes many advanced features of the latest ARM microcon-
trollers such as a floating point unit, a memory protection unit,
separate instruction and data caches, and many peripherals. We
have tested Hermes by running a FreeRTOS v9.0.0 [2] guest on top
of the hypervisor. The contributions made by this work are the
following:

• We describe in detail the implementation of a hypervisor
built for real time software environments to improve respon-
siveness of real-time tasks.

• We discuss challenges of implementing a hypervisor on a
hardware platform with minimal support for virtualization.

• We evaluate the performance of our hypervisor running
multiple real-time tasks in a realistic mobile environment,
comparing it to FreeRTOS.

2 BACKGROUND
Real-time operating systems have been around for a long time, and
we have had a lot of opportunity to study their schedulers. One
may wonder, can we achieve the same results by modifying an RTOS?

In principle, we could, but doing so makes the system much
more difficult to program. Figure 2 outlines a sequence of events
needed to implement our techniques in an RTOS. The key modi-
fication is that the ISR would need to disable the scheduler after
disabling interrupts (between the first and second bubbles). This
would prevent the RTOS scheduler from switching to a new task,
which is the cause of the deadlock. The modification would need
to be made to the tasks and the drivers, not the internal RTOS
code. These modifications would be application specific—we would
only make these modifications in the highest priority drivers and
associated user code. There may need be some modifications to
the way the interrupt controller is configured, but they would be
relatively minor. We have not experimented with this.

The reason that we consider this a bad solution is that it requires
programmers to observe extra rules to prevent deadlocks in their
apps. Real time app programming already has specialized rules (eg.
no API calls in high-priority ISRs, etc.) that are generally unknown
to most non-real time programmers. This technique would increase
the difficulty of writing real-time apps, increase the prevalence of
bugs, and require programmers to have deeply specialized knowl-
edge of issues around real-time systems programming. Most regular
mobile programmers probably do not even know what real time
programming is, so it would be unrealistic to expect them to have
deep knowledge of the specialized techniques that it requires.

Furthermore, the RTOS solution would make the performance
of each individual app mutually dependent on the set of other apps

2

161

with which it shares the CPU. As new apps are loaded to a device,
the performance of real-time apps might be degraded.

By contrast, the hypervisor solution creates independent vir-
tual runtime environments for each VM which are not affected
by other VMs that share the CPU. Each VM in Hermes consists
of a group of ISRs and user code. Hermes independently emulates
the CPU’s interrupt controller, system timer, and other hardware
blocks for each VM. By contrast, RTOSes only keep track of the
program counter and stack pointer for each running task. Because
Hermes has independent control of the state of the interrupt con-
troller for each VM, it can handle enabling and disabling interrupts
as the CPU transitions from ISRs to user code, a job that would oth-
erwise be delegated to the individual tasks. This allows us to write
and test the code once in Hermes. App programmers do not need
to worry about enabling and disabling the scheduler, which makes
programming much more intuitive and reduces the possibility of
introducing bugs.

We considered several simpler alternative solutions that could
be implemented in the RTOS to alleviate I/O latency:

Use the interrupt controller to statically mask low-priority inter-
rupts while executing real-time tasks. Figure 2 outlines the sequence
of events needed to mask low-priority interrupts during a high-
priority event. Before any exception has been raised, we want
all interrupts to be enabled. We would only want to mask low-
priority exceptions after a high-priority exception has been raised.
Low-priority exceptions would then remain masked while the high-
priority ISR is executing and until the associated user-mode code
has finished.

This requires disabling interrupts in an ISR, processing the I/O
event, and re-enabling interrupts in the user-mode task associated
with that event. In this scenario, the critical section of code—the
code during which interrupts are disabled—spans a return from
exception. For this to work reliably, the ISRmust return immediately
to the associated user-mode task that collects and processes the
data from the ISR. This is dangerous because after the return from
exception, before executing user mode code, the RTOS will run the
scheduler and possibly select a different user-mode task to run.

In fact, there are three points in this sequence of events where
the RTOS’s scheduler could select a different user-mode task to
run2. If that happens, the different task may not be aware that the
interrupt mask level that was set by the ISR, which may result in a
deadlock. Hermes solves this problem by creating a truly isolated
execution environment for every guest. Hermes tracks and emulates
the CPU state for each guest, including the interrupt mask, interrupt
controller, and many other peripherals. When a context switch
occurs, Hermes restores the new guest’s full emulated CPU state,
not just the guest’s program counter and stack pointer, as is done
in an RTOS. This avoids the problem in Figure 2 where an incorrect
CPU state set by an ISR can follow the execution stream into the
wrong user-mode task.

Because we are emulating the CPU state independently for every
guest on the system, there are fewer rules that programmers need
to follow, and there is less possibility of adverse interaction among
tasks.

2The FreeRTOS documentation instructs users not to call RTOS APIs inside critical
sections to avoid deadlocks for this reason.

Disable interrupts in user-level code. This would allow us to pro-
cess the I/O event in userspace without interruption. It does not
solve the problem of ISR-userspace latency, since more than one
exception may execute sequentially before user code gets a chance
to disable interrupts.

Process I/O events in the ISR.. This would allow us to ensure that
our I/O events are processed in a timely fashion. This could be an
acceptable solution for a single-purpose bare-metal app with no
other tasks running concurrently. The problem with this approach
in an RTOS is that it monopolizes the CPU during the entire I/O
operation, likely causing other tasks—even higher priority ones—to
hang while the I/O event is handled.

Re-prioritize the interrupts. We could use the CPU’s interrupt
prioritization circuits to execute the time-critical ISR first, before
other ISRs. This wouldn’t decrease latency in an RTOS environment
because lower priority ISRs will always execute before the user
space code.

Disable low-priority interrupts inside high-priority ISRs. When
we process a high-priority interrupt, we could disable all lower
priority interrupts. This would cause the high-priority ISR to return
directly to user-mode code without processing low-priority ISRs.
This seems like a hack because it requires the driver code to be
tightly coupled to the application: if threads are added, removed,
or re-prioritized, the driver code would also need to be modified to
reflect the changes in prioritization, likely resulting in bugs. The
hypervisor model allows us to think about tasks independently
without worrying about complex interactions between user-mode
code and drivers.

None of these solutions is a viable alternative because they can-
not reduce latency while maintaining a responsive runtime envi-
ronment for other concurrent tasks.

3 ARCHITECTURE
Generally speaking, there are two classes of problems a hypervisor
needs to solve in order to create a virtual runtime environment
for its guests. First, it needs to emulate I/O operations in software
such that guests think they have access to I/O ports and peripherals
even though they do not. Second, it needs to emulate privileged
instructions and memory accesses such that guests think they can
execute privileged instructions even though they can’t.

In both cases, guests should not be able to directly change the
physical state of the CPU, for example by masking interrupts or
putting the device in a low-power sleep state, because these op-
erations could affect the execution of other guests. Instead, the
hypervisor must emulate these privileged operations in software
so they affect only one guest, not the state of the entire system.

Interrupt Hooking. Used to implement keystroke loggers in early
PCs, interrupt hooking is a technique by which we modify an
interrupt vector table entry for a particular I/O event, redirecting it
from the operating system’s interrupt handler to a different function
called an interrupt hook. When the I/O event occurs, the interrupt
hook function runs first, inspecting, modifying, or logging data
generated by the I/O event. When it finishes, the interrupt hook
then calls the operating system’s interrupt handler which does

3

162

ISR disables interrupts

ISR gets data from peripheral

ISR Calls RTOS API to
send data to user-mode task

ISR returns, scheduler runs

User task calls RTOS API
to get data

User task re-enables interrupts

Wrong user task
is selected to run

scheduler runs

scheduler runs

scheduler
runs

Figure 2: Sequence of events required in an RTOS to dis-
able low-priority interrupts in a high-priority ISR. Inter-
rupts would ostensibly be re-enabled in user mode after the
I/O event has finished processing. However, the RTOS could
transfer control to a different task, which could cause a dead-
lock.

Peripheral 1

Hermes Exception Handler

RTOS A

Ta
sk

 1

Ta
sk

 2

Ta
sk

 3

Bare Metal App B

Peripheral 2 Peripheral 3

Figure 3: Architecture of the Hermes Hypervisor. The main
component of Hermes, its monolithic exception handler,
intercepts all exceptions before dispatching them to the
guests.

not know that the interrupt hook ran ahead of it. This is the basic
concept used by Hermes and other hypervisors to emulate I/O
events.

Hermes is a single monolithic interrupt service routine that in-
tercepts all CPU exceptions before they can be processed by the
operating system. Figure 3 shows a diagram of the interactions
between the Hermes hypervisor and its guests. On boot, the Her-
mes initialization code sets up the CPU’s exception table to point
to the Hermes ISR. It then launches the guest operating systems in
the ARM CPU’s unprivileged execution mode3.

3Normally, operating system code would run in privileged execution mode, but when
the RTOS is running as a guest inside Hermes, it executes in unprivileged mode.

Broadly, there are three kinds of exceptions that Hermes needs
to handle:

Faults are exceptions caused by software running on the CPU.
In general, faults are caused by privileged instructions or memory
operations being run in unprivileged mode. When a guest causes a
fault, it is a cue to Hermes that the guest’s virtual execution state
needs to be modified. For example, when a guest attempts to return
from an exception, it causes a fault because the instruction it uses
is privileged, and the guest is running in unprivileged mode. The
Hermes exception handler will trap the fault and modify the guest’s
virtual state to indicate that the guest is running in virtual unprivi-
leged mode. The different kinds of faults that Hermes handles are
explained in detail below.

Direct I/O Interrupts are interrupts triggered by peripherals
that are exclusively owned by one virtual machine. An example
of this would be a hardware serial port. Hermes handles all direct
I/O interrupts in the same way: by passing control to a hardware-
specific ISR in the appropriate guest. There is no specialized code
for individual direct I/O interrupts. Hermes handles these excep-
tions by setting up a virtualized exception stack frame for the guest
which emulates the stack frame that would have been created by
the hardware if the guest VM were running directly on the bare
metal. It then returns the CPU state to unprivileged thread mode
and passes control to the guest’s interrupt service routine. The
guest’s ISR will then process the exception. As it does so, it will per-
form privileged operations such as accesses to privileged memory
regions, execution of privileged instructions, and exception return.
These privileged operations will be trapped by faults and emulated
by Hermes.

Indirect I/O Interrupts are interrupts triggered by peripherals
that may be shared among multiple guests. An example of this
would be a bridged Ethernet interface where the NIC hardware can
be shared by multiple guests with different virtual MAC addresses.
These are different from direct I/O interrupts because the driver
code for different peripherals must be inside the Hermes hypervisor.
Indirect I/O interrupts are associated with peripheral devices that
are emulated by the hypervisor, so the hypervisor must also store
some virtual state information for each guest VM that uses the em-
ulated peripheral. In general, Hermes will expose some virtualized
hardware interface to the guest, which is either a full or simplified
version of the underlying hardware peripheral’s interface. When
the guest modifies the virtual peripheral’s state, Hermes will record
those changes in its internal data structures and use the guest’s
settings in future interactions with the hardware peripheral.

A key difference between direct and indirect I/O interrupts is
where the peripheral-specific driver code lives. For direct I/O excep-
tions, the driver code is part of the guest, and indirect I/O exceptions,
the driver code is in the hypervisor. A consequence of this is that for
shared peripherals using indirect I/O exceptions, the Hermes driver
may have to significantly modify the hardware peripheral’s settings
to make the virtualized peripherals behave as expected from the
guest’s perspective.

Sleep: If a guest has nothing to do and needs to wait for an
I/O event before it continues processing, it can put its virtual CPU
into a sleep state using the standard ARM sleep instruction wfe.
This is the same method an app would use to put the CPU into a
low-power sleep state if it were running on the bare metal. When a

4

163

guest goes to sleep, the scheduler will be notified, and it will not be
scheduled to run until it gets an I/O event from a peripheral that
it owns. Other guests will then be allowed to use its share of the
CPU. There are several types of faults that Hermes handles:

Privileged register access generates a (possibly imprecise) bus
fault. These are normally associated with attempts to access periph-
erals. The Hermes bus fault handler either emulates the access in
software (if supported) or executes the instruction directly. At the
moment, we have only implemented emulation of a small subset
of the privileged registers, most of which are related to critical
functions like setting the vector table offset register or exception
prioritization.

Privileged instruction generates a usage fault. These are asso-
ciated with attempts to change the execution state of the processor
(modifying stack pointers, exception masking, etc.). Hermes never
directly executes privileged instructions. Instead, it decodes the
instruction and modifies the guest’s emulated state by updating
fields in a data structure.

SVCall handler is a stub that just jumps to the guest’s SVCall
handler, which is executed in unprivileged mode.

I/O Exceptions handler is a stub that jumps to the guest’s im-
plementation of the handler for that exception, which is executed
in unprivileged mode. Hermes looks up the address of the guest’s
handler in the guest’s exception table. If the guest attempts to exe-
cute a privileged instruction or access a privileged memory region
from within its exception handler, that action will trap to the Her-
mes exception handler so it can be emulated.

Guest return from exception creates a memory management
fault. Hermes catches the fault and returns execution to the guest’s
user mode code.

3.1 Establishing Guest Priorities
The ARM Cortex-M interrupt controller includes an interrupt prior-
ity mask register called BASEPRI that can disable interrupt sources
lower than a given priority. The mask register is normally set by
an RTOS to enter/exit critical code sections. Hermes does not allow
guests to directly set the architectural BASEPRI register—that is a
privileged operation that Hermes emulates in software. Instead, it
maintains a virtual BASEPRI register for each guest which is used
as the guest’s priority.

If a guest elevates its BASEPRI register to disable certain interrupt
sources, Hermes elevates that guest’s priority among the pool of cur-
rently active guests. At any given time, the guest with the highest
BASEPRI value will be given access to the CPU. Under some circum-
stances, Hermes may also set the architectural BASEPRI register to
the value configured by the guest, disabling interrupt sources for
low-priority guests. This is howwe establish virtual isolation among
guests—by disabling low-priority interrupt sources andmaintaining
separate states for the virtual interrupt controller in each guest. In
contrast, operating systems—real time or otherwise—do not main-
tain separate virtual hardware states for different tasks or processes.
Instead, OSes prefer to provide programmers with APIs and dri-
vers to interact with the physical hardware. Nothing in principle
prevents them from virtualizing memory or I/O in the way that
hypervisors do. It’s just that our custom is to c all runtime environ-
ments that manage separate virtual state for hardware peripherals

hypervisors and runtime environments that do not manage vir-
tual state for peripherals operating systems. So the question about
whether we can modify the operating system to get the real-time
behavior that we want is really about the architectural and philo-
sophical differences in implementation between these two runtime
environments. Probably if we redesigned operating systems today
from the ground up usingmodern hardware and software, wewould
end up with a design somewhere between an operating system and
a hypervisor: more virtual state than an OS, but more handholding
for I/O (like drivers) than a hypervisor.

3.2 Opportunities
Running a hypervisor on embedded IoT equipment enables some
interesting possibilities for IoT software.

3.2.1 Distributed Processing on a Single Chip. Many embedded
hardware designs use a distributed computation model to separate a
complex task into several independent execution environments. For
example, a board might have one network processor, one sampling
processor, and a main CPU, each performing its own specific task
independently of the others. This type of design complicates the
hardware and software and likely drives up the cost, size, and energy
requirements of the equipment. With a hypervisor, we can run all
software on a single CPU while maintaining isolation by running
each independent application in its own VM. CPU and resource
allocation can be strictly controlled by the hypervisor to ensure
that deadlines are met.

3.2.2 Security and Privacy. Mobile device privacy is an interesting
area of research in which we try to limit the amount of personally
identifying information that users divulge about themselves in the
course of using mobile and IoT apps. In a parallel line of investiga-
tion, we have used Hermes as a platform for capturing information
about users in mobile apps that is collected from sensors like video
cameras and microphones on board mobile and IoT devices [16].
The sensor data streams captured by Hermes can be processed
by anonymization software in real time before being handed off
to the appropriate app. The advantage of operating system and
hypervisor-level techniques over the more common network mid-
dlebox approach [8, 12] is that the sensor data is unencrypted at the
hardware level. A hypervisor-based privacy agent does not need
to worry about decrypting and SSL stream to inspect or modify its
content.

Authenticating the software on an unattended embedded device
is still an open problem. A few proposed solutions [4, 22] rely on
measuring the timing of some arbitrary computational operation.
The hypervisor may be able to serve as a root of trust for virtualized
applications by implementing a virtualized trusted platformmodule
(vTPM) [1] to be used by underlying software components. It may
be possible to implement a virtual TPM in software using either
ARM TrustZone [23] or an on-chip cryptographic accelerator [13].

3.2.3 Loadable Apps. Apps written by users or third parties could
be easily selected from an app store and run natively on the IoT
device, allowing flexibility to the end user without overloading
the cloud services. A major challenge for this model of app distri-
bution is that systems without an MMU must have all their code
compiled together before runtime. Third party apps, when loaded

5

164

dynamically, could overwrite each other’s memory regions during
execution. Furthermore, allowing third party apps to run on an
IoT platform creates software versioning headaches because we
must make sure that the OS and user app share the same library
and system call implementation: when we upgrade one, we must
upgrade all.

A hypervisor could solve both problems by running each user
app inside an independent virtual machine. When we need to con-
text switch away from one user app, we can snapshot it into a
peripheral memory device (external SRAM or flash) and load a
different app into the same memory space. This would allow us to
run multiple apps with a single virtual memory space without the
use of an MMU. From the app’s perspective, it would be running
on an unshared virtual machine, and it would not need to share
common drivers with the RTOS, making software compatibility
much simpler.

3.3 Challenges
By running a hypervisor on a Cortex-M CPU, we are using the
device in a way that was not intended by its designers. Emulation
of privileged instructions and memory regions, I/O, etc. exposes
some interesting features, optimizations, and design decisions in
the CPU that programmers would not normally encounter.

3.3.1 Compile-Time Guest Setup. Since we are dealing with a sys-
tem that has no MMU, we are required to compile all guests with
the hypervisor into a single runtime binary. The practical challenge
is that, for symmetric guests (more than one instance of a single
guest OS), we must change the name of each function and variable
in order to avoid linker errors. This can be mildly annoying because
it makes the RTOS code harder to read. We have written a script to
perform this task automatically.

3.3.2 Imprecise Bus Fault Exceptions. The ARM Cortex M line
of CPUs throws bus fault exceptions for accesses to privileged
memory regions that are mapped to certain control registers. Some
of these exceptions can be imprecise, meaning that the CPU does
not record the exact instruction that caused the exception. Instead,
it will throw a bus fault as soon as possible (in our experience 2-10
instructions past the faulting instruction). This makes the job of the
Hermes exception handler difficult since it does not know which
privileged memory access needs to be emulated. The only thing we
can be sure of is that the faulting instruction occurs earlier in the
instruction stream than where the exception was thrown.

We solve the problem of imprecise bus fault exceptions by tracing
back through the instruction stream to look for a privileged instruc-
tion with the correct effective address that is likely to have caused
the imprecise exception. Starting at the address of the instruction
that caused the exception, we trace back through the last five in-
structions in order of memory address. We decode each instruction
and compare its effective address to the address that caused the
bus fault. If the instruction’s effective address matches the offend-
ing effective address, then we assume a match and emulate that
instruction.

If we do not find a bus fault address match in the last five in-
structions before the exception was thrown, we examine the same
five instructions again, this time looking for any instruction that

Instruction Function
mrs, msr Read and write to special-purpose registers

that control the execution state of the CPU.
These instructions are used by the OS to
set the supervisor and user stacks, change
between supervisor and user mode, etc.

wfe, wfi Put CPU to sleep and wait for interrupt.
cpsie, cpsid Enable/disable interrupts.

Table 1: List of privileged instructions that do not cause priv-
ilege violations when executed in unprivileged mode.

could have caused a bus fault. We do so by examining the effective
address of each instruction and determining if it corresponds to a
privileged memory region. We assume the most recently executed
instruction that accessed a privileged memory region was the one
that caused the bus fault.

Clearly, there are some pathological cases that could cause this
approach to fail. For instance, consider the following instruction se-
quence for updating the value of a privileged hardware I/O register,
executed in unprivileged mode:

ld r1 , = p r i v i l e g e dAdd r e s s
∗ ld r0 , [r1]

add r0 , r0 , #4
∗ s t r0 , [r1]

In this instruction sequence, the ld and st instructions marked
with a * will each generate a bus fault because they access a privi-
leged memory region. The bus fault may be imprecise, and it may
be delayed by up to ten instructions past the offending instruction.
This means that the CPU may not take an exception for the ld
instruction until several instructions past the st. Since both instruc-
tions have the same effective address, we won’t be able to trace back
through the instruction stream and distinguish the two instructions
based on effective address only. Furthermore, by the time the ex-
ception is taken, the value in register r1 may have been changed
by subsequent instructions, making it impossible to identify the
effective address of the offending instructions.

Unfortunately, this instruction pattern is fairly common in code
that configures or modifies the settings of peripherals or I/O devices.
Our solution to this problem is to add pipeline synchronization
instructions after each privileged memory access, which forces all
in-flight instructions to complete before proceeding. This forces
any exceptions caused by in-flight instructions to be taken before
proceeding, making it possible for Hermes to identify the exact
instruction responsible for the privileged memory access. Hand-
patching OS kernels is a manual and painful process. A pre-patched
version of FreeRTOS is available on the Hermes website. We have
not yet developed any automated tools to search for privileged
memory accesses in the OS source code and automatically add
pipeline synchronization instructions in the right places, although
it would in principle be possible to do so.

So far, we have not encountered any code in a guest that causes
this approach to fail to emulate the guest.

6

165

3.3.3 Some Privileged Instructions Don’t Cause Exceptions When
Executed in Unprivileged Mode. Some privileged instructions on the
ARM Cortex M7 do not cause privilege violation exceptions when
executed by the guest. A list of some privileged instructions that we
know do not cause exceptions when executed in unprivileged mode
is shown in Table 1. This is a challenge of not having hardware
support for a hypervisor. For example, the mrs and msr instructions
are classified as privileged instructions, but when they are executed
by code running in unprivileged mode, they fail silently: the reg-
ister write is not committed, and the processor continues normal
execution. Oddly, whether or not we are allowed to execute mrs
and msr instructions seems to depend not on the privilege mode of
execution, but on the stack pointer we are using. If we are using
the Master Stack Pointer (MSP), we can execute mrs and msr, but if
we are using the Process Stack Pointer (PSP) we cannot. Usually
(but not always) the MSP is used when executing privileged code
and the PSP is used when executing unprivileged code.

The problem is that if a guest OS tries to modify the processor
state with one of these privileged instructions, that state modi-
fication cannot be registered by Hermes since it does not cause
an exception. The privileged instruction will complete like a nop
instruction without modifying the CPU state. Critical CPU state
changes like disabling interrupts will not work as intended.

3.3.4 FreeRTOS. FreeRTOS is a popular (if not the most popular)
real-time operating system for embedded and IoT computers. It has
been ported to CPUsmanufactured by 20+manufacturers represent-
ing every commonly used architecture (ARM, x86, etc.). FreeRTOS
implements a rate monotonic scheduler in which each task has a
fixed priority, and the highest priority task that is ready to run is
executed first.

FreeRTOS and others like it impose strict rules about how user
mode software can call the RTOS API in order to avoid deadlocks
such as in (1). For example, no RTOS API calls can be made within
high-priority ISRs, presumably to maintain responsiveness for the
rest of the system. This further limits the scope of what we can do
with the RTOS.

3.3.5 ARM Exception Handling. The ARM Cortex-M CPUs include
an interrupt controller that allows software to prioritize interrupts.
Each interrupt can be assigned a priority between 0 and 255 (higher
priority values are associated with higher priority). ISRs associated
with low-priority interrupts can be preempted by ISRs for high-
priority interrupts.

Software running on the ARM device can also mask exceptions
below a desired priority value by setting a core register called
BASEPRI. When an interrupt occurs, its priority is compared with
the value in BASEPRI, and its ISR is only executed if the interrupt
priority is greater than the BASEPRI. Otherwise, the ISR is delayed
until the value in BASEPRI is reduced below the interrupt’s assigned
priority. Changing the value in BASEPRI is done by executing a
privileged msr instruction.

We circumvent this problem by patching the OS kernel, adding
an undefined instruction immediately following an mrs or msr.
When the hypervisor encounters an undefined instruction excep-
tion, it will search backward in the instruction stream for an mrs
or msr instruction and emulate it. If we run an unpatched kernel

inside the hypervisor, it will crash because the intended CPU state
modifications will not happen as intended.

In FreeRTOS, there is a total of 38 assembly language instructions
that need to be added in order to make the OS run as a guest in
the hypervisor. All of the additional instructions are in FreeRTOS’s
chip-specific code that deals with timer interrupts and scheduling.
We have posted a patched version of the FreeRTOS v9.0.0 kernel
on the project website.

3.3.6 Online Instruction Decode. Because some privileged memory
accesses cause imprecise exceptions, it was necessary for us to
identify the likely source of an imprecise bus fault by sequentially
decoding instructions immediately prior to the bus error exception
and searching for one with a matching effective address. Our in-
struction decoding code, works to correctly execute a guest running
FreeRTOS v9.0.0.

However, this approach is slow, and there is probably a better
solution.

3.3.7 We Invalidate I$ for Every Privileged Instruction. The way
Hermes handles un-emulated privileged instructions is by copying
the instruction from the guest’s instruction stream into a subroutine
that is called by Hermes. Before we call the subroutine, we must
invalidate the CPU’s instruction cache because it contains stale
data from before the instruction was copied to it.

The ARM Cortex M7 core does not allow us to selectively invali-
date lines in the instruction cache. In order to clear the stale data
from the instruction cache, we need to invalidate the entire cache,
which causes a huge slowdown in execution.

Privileged instruction execution is mostly associated with I/O
events, and most privileged instructions appear at boot time when
peripherals are being initialized. This could be a problem if we try
to emulate an I/O device that requires a lot of reads and writes
to privileged memory regions, as illustrated by the study of I/O
performance in Table 4 in Section 4.

4 EVALUATION
4.1 Problem Validation
Using performance counters on the ARM Cortex M7 CPU, we mea-
sure the ISR-user space latency—the time between beginning of
ISR execution to beginning of userspace data processing. This is
a metric of how long it takes to respond to an I/O event. Ideally,
for time sensitive I/O this time should be short and deterministic,
meaning the same for each I/O event. We find that in the FreeR-
TOS environment, the ISR-user space latency is less deterministic
under high I/O load, as expected. We have also experienced this
problem when developing other systems, but we did not study it as
carefully [17].

4.1.1 Experimental Setup. We measured the ISR-userspace latency
for a serial port receive in FreeRTOS and Hermes. In FreeRTOS, we
used an OS queue to transfer the data from an ISR to a user-mode
task. In Hermes, we ran a FreeRTOS guest alongside a bare metal
guest that transferred data between an ISR and userspace code using
a memory buffer. In both runtime environments, we had two other
periodic FreeRTOS tasks running alongside the latency test. In both
cases, we ran the latency test in isolation as well as in the presence

7

166

FreeRTOS, Serial Only

3000 4000 5000 6000 7000
0

0.05

0.1

0.15

0.2

0.25

0.3
FreeRTOS, Serial + Ping Flood

3000 4000 5000 6000 7000
0

0.05

0.1

0.15

0.2

0.25
Bare Metal Guest, Serial Only

3000 4000 5000 6000 7000
0

0.1

0.2

0.3

0.4

0.5

Bare Metal Guest,
Serial + Ping Flood

3000 4000 5000 6000 7000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Histogram of Interrupt Latencies

Cycles Latency

Fr
ac

tio
n

of
 S

am
pl

es Extra
latency
caused by
Ethernet
Rx and Tx
ISRs

Figure 4: ISR-userspace latency histograms. Latency is measured as the number of cycles elapsed between executing the serial
port receive ISR and beginning of userspace processing.

Software Environment Entropy of Latency
FreeRTOS, Serial Only 2.73
FreeRTOS, Serial + Ping Flood 3.65
Bare Metal Guest, Serial Only 1.94
Bare Metal Guest, Serial + Ping Flood 2.08

Table 2: Entropy of the distributions of latency measure-
ments (distributions shown in Figure 4). Low values of en-
tropy are more deterministic. The bare metal guest running
in Hermes has much more predictable latency than tasks in
FreeRTOS. Under Hermes, latency is still highly determinis-
tic under high I/O load.

of high I/O load (a ping flood) to test how well each software envi-
ronment could provide a deterministic runtime environment. The
networking software that responded to the pings was implemented
as a low-priority task in FreeRTOS for both environments.

4.1.2 Results. Figure 4 shows the results of our latency tests. Each
subplot is a histogram of ISR-userspace latencies. Ideally, we would
want these plots to have only one bar—a single response time for
every I/O event. Figure 4 (a) and (b) show latency in FreeRTOS only,
under low and high I/O load respectively. Under high I/O load, the
latency histogram is more spread out because exceptions raised by
unrelated I/O events delay execution of the user mode code in an
unpredictable way. This happens when a serial port exception and
a network port exception occur close in time. Both exceptions must
be processed before the user mode code to handle the serial port
receive can begin executing. We get shorter and more deterministic
response times when the serial port exception occurs in isolation. If
the network port exception occurs near the same time as the serial
port exception, the network port ISR will have to execute before the
CPU can return to user mode, delaying the response time. This is
an inherent disadvantage of running multiple unrelated programs
on a single processor which we are trying to correct with Hermes.

Figure 4 (c) and (d) show the latency of the same I/O operation
running as a bare-metal guest inside Hermes. Determinism is higher
for histograms that are more clustered around a single value and
lower for histograms that are more spread out.

4.1.3 Discussion. The reason that ISR-userspace latency is more
deterministic in Hermes under high I/O load is that by design,
Hermes can enable or disable different interrupt sources depending
on which guest is active. In this test, we disabled the network port
exception when the bare-metal serial port guest was running. This
makes it impossible for the network port ISR to interrupt the user-
mode code that handles the serial port receive. Operating systems
in general do not support changing processor state for different
threads4, presumably because I/O transactions are assumed to be
the domain of the operating system and mostly independent of user-
mode software. That assumption was generally valid for early PCs
and servers, whose job was primarily batch-mode processing with
very little user interaction. Mobile and IoT devices have completely
different set of requirements: they need to serve as a responsive
user interface in which software works closely with I/O.

Uncertainty in scheduling can create real problems for these
kinds of systems. For instance, if the same timing uncertainty in
Figure 4 were imposed on ADC sampling in an IoT device, it could
cause several decibels of harmonic distortion [3]. It is easy to imag-
ine many situations in which timing errors could result in degraded
system performance on mobile platforms.

The results in Figure 4 are an improvement to [15] which had an
incomplete implementation of guest context switching in response
to interrupts. At boot, we initialize an array of data structures
containing (1) an interrupt priority and (2) a pointer to a guest that
owns the interrupt. The interrupt number is implied by the position
in the array. We also configure the ARM’s interrupt controller
with the same interrupt priorities as the array. When an interrupt
occurs, it will be masked by the interrupt controller unless the
BASEPRI register has a smaller mask value than the interrupt’s
priority. Interrupts with low priority are associated with less time-
critical tasks.

If the interrupt has a higher priority than the BASEPRI, its prior-
ity is inserted into the BASEPRI so its handler cannot be preempted
by lower-priority interrupts. The associated guest is then given
control of the CPU, and the guest’s ISR is executed. This method is

4For example, we are not aware of any RTOS that allows the programmer to enable or
disable different drivers while certain threads are running.

8

167

a generalization of the one presented in [15], but it is more flexible
for multiple exceptions.

In this method, when a high-priority exception occurs, the cor-
responding guest will immediately be given access to the CPU,
regardless of what other guests or ISRs are currently executing. The
user-mode code for that guest will have the opportunity to respond
to the interrupt without waiting for other lower priority exceptions
to finish.

The main goal of the Hermes hypervisor is to provide a thinner
layer between hardware and software than is possible with an RTOS.
There are three general techniques for virtualizing I/O:

4.2 Mobile Device Use Case
To demonstrate howHermeswould behave in a real deployment sce-
nario, we built a prototype handheld device based on the SAME70
Xplained development board, and LCD touchscreen, and a GPS re-
ceiver, and camera. Our demonstration platform is meant to mimic
a smart watch or other low-power mobile device.

Using the GPS receiver and LCD screen, we developed an app
that tracks the user’s location in real time and computes the speed
based on successive measurements. We developed a simple service
to display the current speed on the LCD and display a moving
sprite-based background image. The moving background image
is intended to mimic the user interface (such as a moving map)
that such an app might display. We also implemented an app that
handles network services to mimic a WiFi or Bluetooth interface
that may be needed to send or receive application data (emails, map
updates, etc.).

We also developed a video app that gathers frames from the
video camera, postprocesses each frame in real time, and displays
the frame to the user. Our postprocessing consists only of simple
color correction since the embedded CPU is not capable of running
sophisticated workloads like face recognition in real time. Still, the
real-time color correction is near the limit of the CPU’s capacity,
and we found that additional workload such as a large volume of
incoming network traffic put the system over its capacity, creating
performance problems in an RTOS environment.

We ported these apps to the FreeRTOS and Hermes runtime en-
vironments to compare their performance. We focus on evaluating
how real-time data from the GPS module is handled in both envi-
ronments and how I/O latencies can affect the GPS apps can affect
computation of instantaneous speed in the presence of a realistic
mobile device workload.

4.2.1 Video App. The board we use has a VGA image sensor in-
terface that can accept images in 16-bit RGB color format at a rate
of about 10 frames per second. Our video camera app has three
major components: (1) a VGA interrupt service routine, (2) image
data processing userland code (3) display ISR. All components are
connected by 12-frame queues. Since the image processing code is a
CPU hog, we do not want to run it in the VGA ISR. However, it must
be run at high priority since it is in the critical path for the user
interface. During the time that the video app is open—which we
imagine would be relatively infrequent in our mobile device—the
camera should be very responsive. The video app is a CPU-intensive
real-time app that runs near our device’s compute capacity.

We implemented the app inside FreeRTOS and Hermes. In each
runtime environment, we tested the app in two scenarios—under
low I/O load and under a ping flood to simulate a high volume
of network traffic. In the FreeRTOS implementation, we were not
able to use the standard queue API to pass data between user code
and interrupt code because high-priority ISRs are prohibited from
making API calls. Instead, we implemented a custom queue outside
of the FreeRTOS API. Normally the RTOS would schedule the user-
land image processing thread if there was data in the queue. But
since our queue was outside the RTOS, we could not just block the
task pending incoming data. Instead, we put the task to sleep for a
short amount of time and poll the queue periodically. If the queue
fills up rapidly before the userland code can poll, it can fill up and
drop a lot of frames. This happens in Figure 5. To allow the video
app to catch up, we had to manually kill the ping flood and allow
the userland code to catch up.

We used the same queue in the Hermes implementation without
frame loss. In the Hermes implementation, when the VGA ISR
starts, the whole video app takes control of the CPU, including
the userland code. As soon as the ISR returns, the userland code
begins reading data from the queue without interruption from the
networking app. In Hermes, related ISRs and user code are logically
grouped together into virtual machines that run as independent
units.

We used frame jitter and loss rate as metrics of performance.
In both cases, we saw no frame losses under low I/O load. Figure
5 shows the number of frames dropped every second during a
276-second test of the FreeRTOS video app. Under high I/O load,
Hermes lost no frames, and the jitter did not increase because
the hypervisor prioritizes userland video frame processing over
lower-priority networking interrupts. In fact, our video processing
software represents a relatively mild test case—we were able to
cause much more dramatic frame jitter and loss rate in FreeRTOS
by increasing the complexity of the video processing algorithm.
Table 3 shows a performance comparison between Hermes and
FreeRTOS for the video app under low and high I/O load conditions.
Figure 6 shows histograms of the inter-frame timing for the same
test cases.

The real-time app performs much better in the Hermes runtime
environment than in the RTOS, but we can’t get something for
nothing. The interesting feature of the video app is that it has real
time requirements and generates high CPU load. When Hermes pri-
oritizes the video app, it starves the networking app of CPU time,
resulting in extremely high (97%) packet loss rates for the ping flood
(lower-speed pings were still lossless). Hermes gives programmers
a knob to turn to trade real-time performance for fairness. We can
dynamically adjust the VM priorities in real time to achieve the
desired middle ground at run time.

4.2.2 GPS App. The GPS module generates location estimates ap-
proximately once per second. To compute speed, the GPS app com-
putes the distance between successive GPS coordinates and divides
by one second. In our app, we only use the GPS to generate loca-
tion estimates. We do not rely on its clock in our speed calculation.
Instead, we use a clock internal to the ARM microcontroller to
keep track of time. We do not want to treat the GPS module as an
independent off-chip coprocessor. One of the goals of Hermes is

9

168

Avg Frame
Loss Rate

Inter-Frame
Jitter (σ)

FreeRTOS, Low I/O Load 0 frames/sec 7.03 ms
FreeRTOS, High I/O Load 4.2 FPS 47.91 ms
Hermes, Low I/O Load 0 FPS 4.85 ms
Hermes, High I/O Load 0 FPS 4.86 ms

Table 3: Performance comparison of Hermesand FreeRTOS
in the video app. Low frame loss rate and jitter is better.

0 50 100 150 200 250 300
Time (s)

0

2

4

6

Fr
am

es
/s

ec
 D

ro
pp

ed
B

y
Fr

ee
R

TO
S

Killed and restarted
ping flood

Queue full

Figure 5: Number of frames dropped by FreeRTOS per sec-
ond as a function of time while camera was running in the
presence of a ping flood.

to allow us to put as much of the computational load as possible
on a single centralized CPU rather than dispatching sub-tasks (like
speed computations) to single-purpose off-chip devices.

In the speed computation, there are three main sources of error:
GPS location error, cruise control error, and I/O latency errors in
the ARM CPU. We model each of these as additive white Gaussian
noise. Since we did not have access to a digital readout of the car’s
speedometer, we did not have access to a reliable ground truth to
compare our results. Instead, we will compare the variance of speed
estimates.

To benchmark the two different runtime environments, we set
our mobile device up in a car and drove down a flat, straight stretch
of highway with the cruise control set to about 67 miles per hour.
Our mobile app’s speed computations were logged to a file via the
board’s serial port. Histograms of our app’s speed computations
in the FreeRTOS and Hermes runtime environments are plotted
in Figure 7. For comparison, we have also plotted speed estimates
using the GPS’s internal timebase.

We are mostly interested in the variance of speed estimates,
which is caused by uncertainty in the I/O event arrival time for
the GPS data and the internal clock. Like the problem validation
in Section 4.1, uncertainty is caused by competing I/O events from
other apps running on the system—in this case from a more real-
istic workload. Each of the trials show in Figure 7 was acquired
separately, which resulted in a slightly different average speed for
each trial.

The GPS-only plot tells us about how much of the speed error is
coming from errors in the GPS and the cruise control. The remainder
of the variance in the FreeRTOS and Hermes histograms comes
from errors in I/O event synchronization and jitter in the ARM
CPU. Hermes has about 46% less variance than FreeRTOS after
controlling for errors from the GPS.

Bare Metal (no emulation) 0.1 ms
Bridged (partial emulation) 0.3 ms
Passthrough 1 ms

Table 4: Comparison of ping round trip times in Hermes for
three Ethernet driver implementations on the ARM device.

Bare Metal (no emulation) 1675 kbytes/sec
Passthrough 12 kbytes/sec

Table 5: Comparison of SD card write throughput for three
driver implementations on the ARM device.

4.2.3 Modifying the FreeRTOS Task for Hermes. API Calls need to
be converted from FreeRTOS to Atmel Software Framework (ASF),
which is a board support library of drivers for bare-metal programs.
Different CPUs or boards will use different board support libraries.
Our FreeRTOS implementation already was using the ASF library
for most of the drivers since it does not provide chip-specific drivers.
For the most part, ASF drivers could be used out of the box without
modification.

One exception is vTaskDelay, which is equivalent to sleep in
Linux. vTaskDelay causes the current task to become inactive for a
period of time and allowing other tasks to run. It is tightly coupled
to the OS’s scheduler. Bare-metal apps—which run as guests in
Hermes—use an ASF library function called Wait which puts the
CPU into a low-power sleep state. When converting our app to run
in Hermes, we need to change all calls from vTaskDelay to Wait.
Also in cases where we modified ASF drivers to be compatible with
FreeRTOS, we need to revert to the stock ASF driver.

4.3 I/O Benchmarking
We evaluated three techniques for virtualizing I/O operations:

• Passthrough uses interrupt and DMA remapping to give
guests direct access to hardware resources.

• Partial emulation implements a reduced-function virtual
hardware device with a custom device driver for the guest.

• Full emulation implements full emulation of the physical
hardware device, including the full complement of registers,
FIFOs, etc available on the hardware.

In this work, we studied passthrough and partial emulation,
using the board’s Ethernet and SD card interfaces as target I/O
devices. The network driver is convenient because it is easy to
benchmark using ICMP echoes (pings), and it’s easy to compare
to other virtualization platforms. We’ve benchmarked multiple I/O
interfaces to see if there are any differences in performance.

4.3.1 Ethernet Interface Benchmarking. Table 4 shows a compari-
son of round trip times for three different Ethernet driver implemen-
tations. The bare metal implementation is the unmodified driver
supplied by the chip manufacturer with no virtualization; it is our
reference implementation.

The bridged implementation is a custom driver running in the
guest. Ethernet device interrupts are handled by Hermes without
being passed up to the guest. The hypervisor presents a virtualized
network interface to the guest, and they hypervisor calls the chip

10

169

100 150 200 250

FreeRTOS, Low I/O Load

100 150 200 250

FreeRTOS, High I/O Load

100 150 200 250

Hermes, Low I/O Load

100 150 200 250
Frame Spacing (ms)

0

1k

2k

3k
Hermes, High I/O Load

0

1k

2k

3k

0

1k

2k

3k

0

1k

2k

3k

N
um

be
r o

f S
am

pl
es

Histogram of Interframe Spacing— Mobile Camera App

Figure 6: Histograms of inter-frame spacing for the video app. Standard deviation of these histograms are jitter in Table 3.

56 58 60 62 64 66 68 70 720

50

100

150 FreeRTOS

56 58 60 62 64 66 68 70 720

50

100

150

200 Hermes

56 58 60 62 64 66 68 70 720
50

100
150
200
250 GPS

Speed Estimate (Miles per Hour)

N
um

be
r o

f S
am

pl
es

σ = 1.74

σ = 2.94

σ = 0.33

Figure 7: Histograms of speed estimates by our GPS app.

manufacturer’s driver functions to send and receive packets. The
bridged driver allows multiple guests to share the same network
interface by multiplexing incoming packets to the guests based on
MAC address.

In the passthrough implementation, the guest runs the manufac-
turer’s driver in raw form, emulated by Hermes. Ethernet device
interrupts are caught by Hermes and passed to the guest, so all
exception handling code is done in guest mode. The Ethernet device
is not shared among multiple guests in this configuration.

Surprisingly, we find that the bridged (hypervisor-assisted) Eth-
ernet driver performs far better than the passthrough. Since the
passthrough driver runs all driver code in guest mode, all privileged
instructions must be emulated by Hermes. This causes a significant
slowdown in packet handling because the Ethernet driver has to
invalidate a lot of data cache lines each time a packet is received,

which requires many privileged instructions and memory accesses.
In the bridged driver, the majority of privileged memory accesses
and privileged instructions are done by the hypervisor, so they
don’t need to be emulated.

4.3.2 SD Card Benchmarking. Table 5 shows a comparison of IO
throughput different SD card driver implementations. The reason
for the poor passthrough driver performance is that in the SD card
write benchmark, the bottleneck of the implementation is in trans-
ferring a large volume of data through the ARM device’s DMA
interface. Each time we perform a block write to the SD card, the
DMA interface invalidates about 1k lines in the data cache. The
cache line invalidation operation is privileged, so it must be emu-
lated by the hypervisor. If we do not invalidate those data cache lines
during the block write, we can get a 3x performance improvement5.
There are several other privileged bulk data transfer operations
in the SD card write benchmark that create similar slowdowns.
By comparison, the Ethernet driver needs to only transfer a small
amount of data to respond to an ICMP echo.

5 RELATEDWORK
Other authors have explored real-time schedulers in hypervisors,
in particular for Linux running in Xen [14, 25, 26]. Nemesis [18], an
operating system that provided soft real-time guarantees for video
processing, was aimed to solve a similar problem under similar
assumptions, but it did not assume hard deadlines. There has also
been work done porting [11] and evaluating [10] the KVM hyper-
visor on the ARM Cortex-A core, which is an application processor
with a full MMU. None that we know of have been implemented
on MMUless machines—even early hypervisors ran on machines
with memory management units [9].

6 CONCLUSION
We have demonstrated that Hermes can improve the responsiveness
of real-time I/O operations by creating separate virtual execution
environments for each task on a real-time system. We arrived at our
implementation by thinking at a high level about what is required
5Of course, by skipping the data cache invalidation, the correct data will not be written
to the SD card, but that does not matter since we are just writing random numbers for
the benchmark.

11

170

to make the time-critical software as responsive as possible. In par-
ticular, we found that traditional real-time operating systems had
an important shortcoming: they always prioritize interrupt han-
dlers above user-mode processing, a vestige of early time-sharing
mainframes that has the unintended consequence of occasionally
running parts of a low-priority task before higher priority tasks.
No amount of reconfiguration in the hardware interrupt controller
can make this problem go away.

Instead, Hermes creates a fully-isolated virtual execution envi-
ronment for each of its guests. The most notable difference between
a hypervisor and and RTOS is that the hypervisor can create a
consistent virtualized CPU state for each guest that can be safely
modified by the guest without affecting the other guests. The hyper-
visor’s virtual CPU state can include things like the configuration
of the interrupt controller, peripherals, etc. By contrast, RTOSes
only independently track the program counter and stack pointer
for each task. Except for those two registers, RTOS tasks cannot
modify CPU state without affecting other tasks. Doing so could
cause the entire system to crash.

Our experiments revealed that I/O performance can be degraded—
sometimes a little, sometimes a lot—by emulation in Hermes. The
question of whether or not that reduced I/O performance is ac-
ceptable is largely application-dependent. In this work, we made
a high-level evaluation of the performance implications for I/O
devices, and we will leave a more detailed analysis for future work.
Also left for future work is an analysis of how competition among
multiple real-time tasks will affect determinism in event responses.
In the mean time, we have made the source code for Hermes freely
available for anyone to download.

7 ACKNOWLEDGMENTS
We would like to acknowledge the anonymous reviewers. The au-
thors were supported in part by the US National Science Founda-
tion through grants CNS-1719336, CNS-1647152, CNS-1629833, and
CNS-1343363.

REFERENCES
[1] Stefan Berger, Ramón Cáceres, Kenneth A. Goldman, Ronald Perez, Reiner Sailer,

and Leendert van Doorn. 2006. vTPM: Virtualizing the Trusted Platform Module.
In Proceedings of the 15th Conference on USENIX Security Symposium - Volume
15 (USENIX-SS’06). USENIX Association, Berkeley, CA, USA, Article 21. http:
//dl.acm.org/citation.cfm?id=1267336.1267357

[2] Richard Berry. 2017. FreeRTOS. (2017). http://www.freertos.org.
[3] Brad Brannon and Allen Barlow. 2006. Aperture uncertainty and ADC system

performance. Application Note AN501 (2006).
[4] Claude Castelluccia, Aurélien Francillon, Daniele Perito, and Claudio Soriente.

2009. On the Difficulty of Software-based Attestation of Embedded Devices.
In Proceedings of the 16th ACM Conference on Computer and Communications
Security (CCS ’09). ACM, New York, NY, USA, 400–409. https://doi.org/10.1145/
1653662.1653711

[5] Yeongpil Cho, Junbum Shin, Donghyun Kwon, MyungJoo Ham, Yuna Kim,
and Yunheung Paek. 2016. Hardware-Assisted On-Demand Hypervisor Ac-
tivation for Efficient Security Critical Code Execution on Mobile Devices. In 2016
USENIX Annual Technical Conference (USENIX ATC 16). USENIX Association, Den-
ver, CO, 565–578. https://www.usenix.org/conference/atc16/technical-sessions/
presentation/cho

[6] Atmel Corporation. 2017. SAM E ARM Cortex-M7 Microcontrollers. (2017).
http://www.atmel.com/products/microcontrollers/arm/sam-e.aspx.

[7] Atmel Corporation. 2017. SAM E70 Xplained Evaluation Kit. (2017).
http://www.atmel.com/tools/atsame70-xpld.aspx.

[8] AndyCrabtree, TomLodge, James Colley, Chris Greenhalgh, KevinGlover, Hamed
Haddadi, Yousef Amar, Richard Mortier, Qi Li, John Moore, Liang Wang, Poonam
Yadav, Jianxin Zhao, Anthony Brown, Lachlan Urquhart, and Derek McAuley.
2018. Building accountability into the Internet of Things: the IoT Databox

model. Journal of Reliable Intelligent Environments 4, 1 (01 Apr 2018), 39–55.
https://doi.org/10.1007/s40860-018-0054-5

[9] R. J. Creasy. 1981. The Origin of the VM/370 Time-sharing System. IBM J. Res.
Dev. 25, 5 (Sept. 1981), 483–490. https://doi.org/10.1147/rd.255.0483

[10] Christoffer Dall, Shih-Wei Li, Jin Tack Lim, Jason Nieh, and Georgios Koloventzos.
2016. ARMVirtualization: Performance and Architectural Implications. SIGARCH
Comput. Archit. News 44, 3 (June 2016), 304–316. https://doi.org/10.1145/3007787.
3001169

[11] Christoffer Dall and Jason Nieh. 2014. KVM/ARM: The Design and Imple-
mentation of the Linux ARM Hypervisor. In Proceedings of the 19th Interna-
tional Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS ’14). ACM, New York, NY, USA, 333–348. https:
//doi.org/10.1145/2541940.2541946

[12] Nigel Davies, Nina Taft, Mahadev Satyanarayanan, Sarah Clinch, and Brandon
Amos. 2016. Privacy Mediators: Helping IoT Cross the Chasm. In Proceedings
of the 17th International Workshop on Mobile Computing Systems and Applica-
tions (HotMobile ’16). ACM, New York, NY, USA, 39–44. https://doi.org/10.1145/
2873587.2873600

[13] Joan G. Dyer, Mark Lindemann, Ronald Perez, Reiner Sailer, Leendert van Doorn,
Sean W. Smith, and Steve Weingart. 2001. Building the IBM 4758 Secure Copro-
cessor. Computer 34, 10 (Oct. 2001), 57–66. https://doi.org/10.1109/2.955100

[14] Marisol GarcÃČÂŋa-Valls, Tommaso Cucinotta, and Chenyang Lu. 2014. Chal-
lenges in real-time virtualization and predictable cloud computing. Journal of
Systems Architecture 60, 9 (2014), 726 – 740. https://doi.org/10.1016/j.sysarc.2014.
07.004

[15] Neil Klingensmith and Suman Banerjee. 2018. Hermes: A Real Time Hypervisor
for Mobile and IoT Systems. In Proceedings of the 19th International Workshop on
Mobile Computing Systems and Applications (HotMobile ’18). ACM, New York, NY,
USA, 1–6. https://doi.org/10.1145/3032970.3032973

[16] Neil Klingensmith and Suman Banerjee. 2018. A Hypervisor-Based Privacy Agent
for Mobile and IoT Systems. In Proceedings of the 20th International Workshop on
Mobile Computing Systems and Applications (HotMobile ’19). ACM, New York, NY,
USA, 1–6. https://doi.org/10.1145/3301293.3302356

[17] Neil Klingensmith, Dale Willis, and Suman Banerjee. 2013. A Distributed Energy
Monitoring and Analytics Platform and Its Use Cases. In Proceedings of the 5th
ACM Workshop on Embedded Systems For Energy-Efficient Buildings (BuildSys’13).
ACM, New York, NY, USA, Article 36, 2 pages. https://doi.org/10.1145/2528282.
2534156

[18] I. M. Leslie, D. McAuley, R. Black, T. Roscoe, P. Barham, D. Evers, R. Fairbairns,
and E. Hyden. 1996. The Design and Implementation of an Operating System to
Support Distributed Multimedia Applications. IEEE J.Sel. A. Commun. 14, 7 (Sept.
1996), 1280–1297. https://doi.org/10.1109/49.536480

[19] C. L. Liu and James W. Layland. 1973. Scheduling Algorithms for Multipro-
gramming in a Hard-Real-Time Environment. J. ACM 20, 1 (Jan. 1973), 46–61.
https://doi.org/10.1145/321738.321743

[20] Fabien Le Mentec. 2014. Using the Beaglebone PRU to
achieve realtime at low cost. Embedded Related (April 2014).
https://www.embeddedrelated.com/showarticle/586.php.

[21] Carlos Moratelli, Sergio Johann, and Fabiano Hessel. 2016. Exploring Embedded
Systems Virtualization Using MIPS Virtualization Module. In Proceedings of the
ACM International Conference on Computing Frontiers (CF ’16). ACM, New York,
NY, USA, 214–221. https://doi.org/10.1145/2903150.2903179

[22] Bryan Parno, Jonathan M McCune, and Adrian Perrig. 2010. Bootstrapping trust
in commodity computers. In Security and privacy (SP), 2010 IEEE symposium on.
IEEE, 414–429.

[23] Himanshu Raj, Stefan Saroiu, Alec Wolman, Ronald Aigner, Jeremiah Cox, Paul
England, Chris Fenner, Kinshuman Kinshumann, Jork Loeser, Dennis Mattoon,
Magnus Nystrom, David Robinson, Rob Spiger, Stefan Thom, and David Wooten.
2016. fTPM: A Software-Only Implementation of a TPM Chip. In 25th USENIX
Security Symposium (USENIX Security 16). USENIX Association, Austin, TX, 841–
856. https://www.usenix.org/conference/usenixsecurity16/technical-sessions/
presentation/raj

[24] Dale F. Willis, Arkodeb Dasgupta, and Suman Banerjee. 2014. ParaDrop: A
Multi-tenant Platform for Dynamically Installed Third Party Services on Home
Gateways. In Proceedings of the 2014 ACM SIGCOMMWorkshop on Distributed
Cloud Computing (DCC ’14). ACM, New York, NY, USA, 43–44. https://doi.org/
10.1145/2627566.2627583

[25] Sisu Xi, Chong Li, Chenyang Lu, Christopher D Gill, Meng Xu, Linh TX Phan,
Insup Lee, and Oleg Sokolsky. 2015. RT-Open Stack: CPU Resource Management
for Real-Time Cloud Computing. In Cloud Computing (CLOUD), 2015 IEEE 8th
International Conference on. IEEE, 179–186.

[26] Sisu Xi, Meng Xu, Chenyang Lu, Linh TX Phan, Christopher Gill, Oleg Sokolsky,
and Insup Lee. 2014. Real-time multi-core virtual machine scheduling in xen. In
Embedded Software (EMSOFT), 2014 International Conference on. IEEE, 1–10.

12

171

http://dl.acm.org/citation.cfm?id=1267336.1267357
http://dl.acm.org/citation.cfm?id=1267336.1267357
https://doi.org/10.1145/1653662.1653711
https://doi.org/10.1145/1653662.1653711
https://www.usenix.org/conference/atc16/technical-sessions/presentation/cho
https://www.usenix.org/conference/atc16/technical-sessions/presentation/cho
https://doi.org/10.1007/s40860-018-0054-5
https://doi.org/10.1147/rd.255.0483
https://doi.org/10.1145/3007787.3001169
https://doi.org/10.1145/3007787.3001169
https://doi.org/10.1145/2541940.2541946
https://doi.org/10.1145/2541940.2541946
https://doi.org/10.1145/2873587.2873600
https://doi.org/10.1145/2873587.2873600
https://doi.org/10.1109/2.955100
https://doi.org/10.1016/j.sysarc.2014.07.004
https://doi.org/10.1016/j.sysarc.2014.07.004
https://doi.org/10.1145/3032970.3032973
https://doi.org/10.1145/3301293.3302356
https://doi.org/10.1145/2528282.2534156
https://doi.org/10.1145/2528282.2534156
https://doi.org/10.1109/49.536480
https://doi.org/10.1145/321738.321743
https://doi.org/10.1145/2903150.2903179
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/raj
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/raj
https://doi.org/10.1145/2627566.2627583
https://doi.org/10.1145/2627566.2627583

	Abstract
	1 Introduction
	2 Background
	3 Architecture
	3.1 Establishing Guest Priorities
	3.2 Opportunities
	3.3 Challenges

	4 Evaluation
	4.1 Problem Validation
	4.2 Mobile Device Use Case
	4.3 I/O Benchmarking

	5 Related Work
	6 Conclusion
	7 Acknowledgments
	References

