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Abstract—Virtualized environments are widely thought to
cause problems for software-based random number generators
(RNGs), due to use of virtual machine (VM) snapshots as
well as fewer and believed-to-be lower quality entropy sources.
Despite this, we are unaware of any published analysis of the
security of critical RNGs when running in VMs. We fill this
gap, using measurements of Linux’s RNG systems (without the
aid of hardware RNGs, the most common use case today) on
Xen, VMware, and Amazon EC2. Despite CPU cycle counters
providing a significant source of entropy, various deficiencies in
the design of the Linux RNG makes its first output vulnerable
during VM boots and, more critically, makes it suffer from
catastrophic reset vulnerabilities. We show cases in which the
RNG will output the exact same sequence of bits each time it
is resumed from the same snapshot. This can compromise, for
example, cryptographic secrets generated after resumption. We
explore legacy-compatible countermeasures, as well as a clean-
slate solution. The latter is a new RNG called Whirlwind that
provides a simpler, more-secure solution for providing system
randomness.
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I. INTRODUCTION

Linux and other operating systems provide random num-

ber generators (RNGs) that attempt to harvest entropy from

various sources such as interrupt timings, keyboard and

mouse events, and file system activity. From descriptions

of events related to these sources, an RNG attempts to

extract (by way of cryptographic hashing) bit strings that are

indistinguishable from uniform for computationally bounded

attackers. While recent system RNGs can make use of

hardware RNGs such as Intel’s rdrand instruction, security

still relies on software sources either exclusively (e.g., on

older CPUs) or in part (e.g., because of uncertainty about

the efficacy of closed-source hardware RNGs [19]).
There exists significant folklore [14,16,27] that system

RNGs such as Linux’s may provide poor security in vir-

tualized settings, which are increasing in importance due

to adoption of cloud computing services such as Amazon’s

EC2. Stamos, Becherer, and Wilcox [28] hypothesized that

the Linux RNG, when run within the Xen virtualization

platform on EC2, outputs predictable values very late in

the boot process. Garfinkel and Rosenblum [8] first hy-

pothesized vulnerabilities arising from the reuse of random

numbers when using virtual machine snapshots. Ristenpart

and Yilek [26] were the first to show evidence of these

and called them reset vulnerabilities. They demonstrated that

user-level cryptographic processes such as Apache TLS can

suffer a catastrophic loss of security when run in a VM that

is resumed multiple times from the same snapshot. Left as an

open question in that work is whether reset vulnerabilities

also affect system RNGs. Finally, common folklore states

that software entropy sources are inherently worse on virtu-

alized platforms due to frequent lack of keyboard and mouse,

interrupt coalescing by VM managers, and more. Despite

all this, to date there have been no published measurement

studies evaluating the security of Linux (or another common

system RNG) in modern virtualized environments.

Our first contribution is to fill this gap. We analyze a

recent version of Linux and its two RNGs, the kernel-

only RNG (used for stack canaries and address-space layout

randomization) as well as the more well-known RNG under-

lying the /dev/urandom and /dev/random devices. Via careful

instrumentation, we capture all inputs to these RNGs in a

variety of virtualized settings, including on local Xen and

VMware platforms as well as on Amazon EC2 instances.

We then perform various analyses to estimate the security

of the RNGs. Our work reveals that:

• Contrary to folklore, we estimate that software entropy

sources, in particular (virtualized or non-virtualized)

cycle counters provide significant uncertainty from an

adversary’s perspective during normal operation of the

system (i.e., after it has booted).

• However, when booting a VM the first use of the kernel-

only RNG as well as the first use of /dev/urandom are

both vulnerable. There exists a boot-time entropy hole,

where insufficient entropy has been collected before

use of the RNGs. Later outputs of the RNG, however,

appear intractable to predict, suggesting the concerns of

Stamos et al. are unwarranted.

• Finally, the /dev/urandom RNG suffers from catas-

trophic snapshot reset vulnerabilities, which unfortu-

nately answers the open question of [26] in the positive

and obviates a countermeasure suggested for the user-

level vulnerabilities previously discovered [26]. We

show that resets can lead to exposure of secret keys

generated after snapshot resumption.

Our results are qualitatively the same across the different

VM management environments, though note that EC2 does

not currently support snapshots and therefore does not (yet)
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RNG Reset Boot Tracking
Security Security Security

Linux GRI No No No
Linux /dev/(u)random No No Yes
FreeBSD /dev/random No Unknown Yes
Windows rand s() No Unknown Unknown
Whirlwind Yes Yes Yes

Figure 1. Security comparison of system RNGs. Reset security refers
to safety upon VM snapshot resumption, boot security means sufficient
entropy is generated prior to first use, and tracking security is forward- and
backward-security in the face of compromise, and resistance to checkpoint-
ing attacks. See Section II-C for more details.

suffer from reset vulnerabilities.

We also perform limited experiments with FreeBSD and

Windows, and specifically demonstrate that reset vulnerabil-

ities affect FreeBSD’s /dev/random and Microsoft Windows

rand s() as well. This suggests that problems with virtual-

ized deployments are not confined to the Linux RNGs.

We move on to offer a new RNG design and implementa-

tion (for Linux), called Whirlwind. It directly addresses the

newly uncovered deficiencies, as well as other long-known

problems with the Linux RNG. Here we are motivated by,

and build off of, a long line of prior work: pointing out

the troubling complexity of the /dev/random and /dev/uran-

dom RNG system [6,11,18]; showing theoretical weaknesses

in the entropy accumulation process [6]; designing multi-

pool RNGs without explicit entropy counters [13,21]; and

showcasing the utility of instruction and operation timing to

quickly build entropy [1,23,24].

Whirlwind combines a number of previously suggested

techniques in a new way, along with several new tech-

niques. It serves as a drop-in replacement for both of the

Linux RNGs, and provides better security (see Figure 1).

In addition to security, the design focuses on simplicity,

performance, theoretical soundness, and virtualization safety

(though it will perform well for non-virtualized settings as

well). At its core is a new cryptographic hashing mode,

inspired by but different from the recent construction of

Dodis et al. [6], plus: a simple two-pool system, simpler in-

terface, streamlined mostly-CPU-lock-free entropy addition,

a method for bootstrapping entropy during boot and VM

resumption, direct compatibility with hypervisor-provided

randomness, and support for the rdrand instruction when it

is available. We emphasize that the security of Whirlwind

never relies on any one feature in particular (e.g., using

rdrand by itself), and instead uses multiple inputs sources

to ensure the highest possible uncertainty even in the face

of some entropy sources being compromised.

In terms of performance, Whirlwind matches the current

Linux /dev/urandom, and in some cases performs better.

We also show experimentally that it suffers from none

of the problems for virtualized settings that render the

current Linux RNG vulnerable. We do caution that more

analysis will be needed before widespread deployment, since

the Linux RNGs must work in diverse environments. For

example, future analysis will include low-end embedded

systems, another problematic setting [11,12,23]. Towards

this, we are in the process of making Whirlwind ready for

public, open-source release.

Finally, we explore hypervisor-based countermeasures for

legacy guest VMs with the old RNG. In particular, we

investigate whether the hypervisor can defend against reset

vulnerabilities by injecting entropy into the guest RNG

via (artificially generated) interrupts during resumption. We

show that either a user-level guest daemon or the hypervisor

can force Linux /dev/random to refresh itself and reduce

the window of vulnerability from minutes to a few seconds.

While much better than current systems, this is still below

the security offered by Whirlwind. Due to space constraints,

we defer the details of these countermeasures to the full

version of the paper, which will be available from the

authors’ websites.

II. BACKGROUND

A. The Linux RNGs

The Linux kernel provides three RNG interfaces which are

designed to provide cryptographically strong random values:

/dev/random, /dev/urandom, and get random int (GRI).

The /dev/(u)random RNG. The Linux kernel exposes two

pseudo-devices that implement interfaces to what we call

the /dev/(u)random RNG. The first, /dev/random, may until

enough entropy is available, while the second, /dev/urandom,

is non-blocking. On the systems we examined, applications

and the Linux operating system itself use exclusively /de-

v/urandom and never read from /dev/random. The RNG

consists of (1) entropy gathering mechanisms that produce

descriptions of system events; (2) several entropy pools to

which these descriptions are mixed with a cryptographically

weak generalized feedback shift register; (3) logic for how

and when entropy flows between pools (described below);

and (4) APIs for consumers to query to obtain randomness.

To retrieve random numbers, an application opens one of the

device files, performs a read, and (presumed-to-be) random

bytes are returned. Additionally, an application may write to

either device, in which case the /dev/(u)random RNG mixes

the contents of the write buffer into both secondary entropy

pools (also described below) but does not update any entropy

estimates. For example, during boot a file containing output

from /dev/urandom during the preceding shutdown is written

back into the /dev/(u)random. Read and write requests are

always made in units of bytes. The /dev/urandom RNG also

has a kernel-only interface get random bytes() that does

not use the pseudo-device but is functionally identical to

/dev/urandom.

An entropy pool is a fixed-size buffer of random data

stored in kernel memory along with associated state vari-

ables. These variables include the current mixing location
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Figure 2. The Linux RNGs. (Left) Data flow through the /dev/(u)random RNG and (Right) the kernel-only RNG GRI.

for new inputs and an entropy count measured in bits. There

are four pools as shown on Figure 2. In the below, we omit

details regarding the cryptographic extraction function and

the non-cryptographic mixing functions. Detailed descrip-

tions appear in [6,18].
Interrupt pool (IntP): The kernel IRQ handler adds a de-

scription of each interrupt to a 128-bit interrupt pool (called

a “fast pool” in the source code). There is one IntP per

CPU to eliminate contention. Each interrupt delivery takes

a description (cycle counter xor’d with kernel timer, IRQ

number, instruction pointer that was interrupted) and mixes

it into the pool using a cryptographically weak function. The

entire contents of each IntP are mixed into the input pool IP
using another (more complex generalized feedback register)

mixing function every 64 interrupts or if a second has passed

since the last mixing into IP. At the same time, the input

pool entropy count denoted IP.ec is incremented (credited)

by one (bit), which represents a conservative estimate .
Input pool (IP): The 4096-bit input pool has the interrupt

pool mixed into it as just mentioned, and as well has device-

specific event descriptions (kernel timer value, cycle counter,

device-specific information) of keyboard, mouse, and disk

events mixed in using the more complex cryptographically

weak function. We will only consider settings with no

keyboard or mouse (e.g., servers), and so only disk events

are relevant. (Network interrupts go to IntP.)
Non-blocking pool (UP): A 1024-bit pool is

used for the non-blocking /dev/urandom interface.

Upon a request for 8n bits of randomness, let

αu = min(min(max(n, 8), 128), �IP.ec/8� − 16). If

UP.ec < 8n and 8 ≤ αu the RNG transfers data from the

input pool IP to UP. Put another way, a transfer occurs only

if UP.ec < 8n and IP.ec ≥ 192. If a transfer is needed,

the RNG extracts αu bytes from IP and mixing the result

into UP, decrementing IP.ec by 8αu, and incrementing

UP.ec by 8αu. If a transfer is not needed or not possible

(by the restrictions above), then UP is left alone. In the

end, the RNG decrements UP.ec by 8n, extracts 8n bits

from UP, and return those bits to the calling process.
Blocking pool (RP): A 1024-bit pool is used for the block-

ing /dev/random interface. Upon a request for 8n bits of ran-

domness, let αr = min(min(max(n, 8), 128), �IP.ec/8�).
If RP.ec ≥ 8n then it immediately extracts 8n bits from

RP, decrements RP.ec by 8n, and returns the extracted bits.

Otherwise it checks if αr ≥ 8 and, if so, transfers αr bytes

Transfer When Condition
IntP → IP Interrupt arrival 64 interrupts or 1 second

IP → UP n bytes requested UP.ec < 8n
from /dev/urandom IP.ec ≥ 192

IP → RP n bytes requested RP.ec ≤ 8n
from /dev/random IP.ec ≥ 64

Figure 3. Conditions for transfers between entropy pools.

from IP to RP, incrementing and decrementing entropy

counters appropriately by 8αr. It then immediately extracts

�RP.ec/8� bytes fromRP, decrements RP.ec appropriately,

and returns the extracted bits to the calling process. If on

the other hand αr < 8, then it blocks until αr ≥ 8.

Figure 3 summarizes the conditions required for trans-

ferring data from one pool to the next. The design of

/dev/(u)random intimately relies on ad-hoc entropy esti-

mates, which may be poor. We will also see, looking ahead,

that the entropy counters cause trouble due to their use

in deciding when to add entropy to the secondary pools.

For example, we observe that there exists a simple entropy
starvation attack against /dev/urandom by a malicious user

process that continuously consumes from /dev/random (e.g.,

using the command dd if=/dev/random). In this case,

reads from /dev/urandom will never trigger a transfer from

IP.

get random int: the kernel-only RNG. GRI is a simple

RNG that provides 32-bit values exclusively to callers inside

the kernel. GRI is primarily used for Address Space Layout

Randomization (ASLR) and StackProtector “canary” values

used to thwart stack-smashing attacks. The GRI RNG is

designed to be very fast and does not consume entropy from

the pools in /dev/(u)random.

The GRI RNG uses two values stored in kernel memory:

a per-CPU 512-bit hash value HV and a global 512-bit

secret value S, which is initially set to all zeros. During

the late_init phase of boot, the kernel sets the secret

value S to 512-bits obtained from /dev/urandom is initially

set to all zeros. Late in the boot process, the kernel sets the

secret value S to 512-bits obtained from /dev/urandom.

Each time it is called, GRI adds the process ID (PID)

P of the current process, the current kernel timer value J
(called jiffies), and the lower-32 bits of the timestamp cycle

counter CC into the first 32-bit word of the hash value HV ,

and then sets HV to the MD5 hash of HV and the secret
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value S. That is, it computes HV = H( (HV [1 .. 32] +
P + J + CC) || HV [33 .. 512] || S) where “+” is integer

addition modulo 232, || is concatenations, and H(·) is the

MD5 hash. The first 32 bits of HV are returned to the caller,

and the new HV value becomes the stored hash value for

the next call.

Use of hardware RNGs. If available, the /dev/(u)random

RNG uses architecture-specific hardware RNGs dur-

ing initialization and output generation. During boot,

/dev/(u)random reads enough bytes from the hardware RNG

to fill each pool and uses the weak mixing function to mix

in these values. This is done for the input, nonblocking,

and blocking pools, but not for the interrupt pool. During

output generation, /dev/(u)random XORs values from the

hardware RNG into each word of the output value prior to

the “folding” of the output that produces a 10-byte chunk.

GRI returns a 32-bit value from the hardware RNG in place

of the software implementation described above.

B. Virtualization

In this work, we focus on the efficacy of the Linux RNGs

when operating in virtualized environments without the aid

of a hardware RNG. In a virtualized environment, one or

more guest virtual machines (VMs) run on a single physical

host, and the hypervisor mediates access to some hardware

components (e.g., the network interface, disks, etc.). There

is a management component for starting, stopping, and

configuring virtual machines. In Xen, this is called Dom0,

while in hosted virtual machines (e.g., VMware Workstation)

this is the host operating system.

A VM can be started in one of three ways. First, it can

execute like a normal physical system by booting from a

virtual disk. As it executes, it can update the state on the

disk, and its next boot reflects those changes. Second, a VM

can be repeatedly executed from a fixed image, which is a

file that contains the persistent state of the guest OS. In this

case, changes made to the OS state are discarded when the

VM shuts down, so the OS always boots from the same state.

This is the default case, for example, in infrastructure-as-a-

service cloud computing systems including Amazon EC2.

Third, a VM can start from a snapshot, which is a file that

contains the entire state of a running VM at some point

in its execution. This includes not only the file system but

also memory contents and CPU registers. Both Xen and

VMware support pausing a running VM at an arbitrary point

in its execution and generating a snapshot. The VM can be

resumed from that snapshot, which means it will continue

executing at the next instruction after being paused. If a

VM continues running after the snapshot, restarting from a

snapshot effectively rolls back execution to the time when

the snapshot was taken.

It has long been the subject of folklore that RNGs,

and in particular, /dev/(u)random, may not perform as well

when run within a VM [14,16,27,28]. First, hypervisors

often coalesce interrupts into batches before forwarding

them to a given guest domain to improve performance.

Second, memory pages are typically zeroed (set to all zeroes

to erase any “dirty” data) by the hypervisor when new

physical memory pages are allocated to a guest VM. Zeroing

memory pages is required to ensure that dirty memory

does not leak information between different guests on the

same host machine. Third, several system events used for

entropy by /dev/(u)random are not relevant in popular uses

of virtualization, in particular keyboard and mouse events

do not occur in virtualized servers.

C. RNG Threat Models
The Linux RNGs are used by a variety of security-

critical applications, including cryptographic algorithms and

for system security mechanisms. Should RNG values be

predictable to an adversary or the same (unknown) value

repeatedly used, the RNG-using applications become vul-

nerable to attack. As just a few examples, /dev/urandom

is used to seed initial TCP/IP sequence numbers and by

cryptographic libraries such as OpenSSL to generate secret

keys, while GRI is used as mentioned above for ASLR and

stack canaries.
RNGs are therefore designed to face a variety of threats

from attackers both off-system and (unprivileged) local

attackers. We assume that the attacker always knows the

software and hardware stack in use (i.e., kernel versions,

distribution, and underlying hypervisor). The threats to RNG

systems are:
(1) State predictability: Should the entropy sources used

by the RNG not be sufficiently unpredictable from the

point of view of the attacker, then the RNG state (and

so its output) may be predictable. For example, a low-

granularity time stamp (e.g., seconds since the epoch)

is a bad entropy source because it is easily guessed

[10].

(2) State compromise: The attacker gets access to the inter-

nal state of the RNG at some point in time and uses it to

learn future states or prior states (forward-tracking and

back-tracking attacks respectively). Forward-tracking

attacks may use RNG outputs somehow obtained by

the attacker as checkpoints, which can help narrow

a search allowing the attacker to check if guessed

internal states of the RNG are correct. VM snapshots

available to an attacker, for example, represent a state

compromise.

(3) State reuse: With full-memory VM snapshots, the same

RNG state may be reused multiple times and produce

identical RNG outputs. Since the security of a random

number is its unpredictability, this can eliminate the

security of the operation using a repeated RNG output.

(4) Denial-of-service: One process attempts to block an-

other process from using the RNG properly.

562

Authorized licensed use limited to: Loyola University Chicago. Downloaded on December 30,2024 at 17:15:09 UTC from IEEE Xplore.  Restrictions apply. 



Our focus will be on the design of the RNGs, and so we

will not attempt to exploit cryptanalytic weaknesses in the

underlying cryptographic primitives MD5 and SHA-1.

III. MEASUREMENT STUDY OVERVIEW

In the following sections we report on measurements in

order to answer several questions about the security of the

Linux RNGs when used on virtual platforms. In particular:

• When booting from a VM image, how quickly is the

RNG state rendered unpredictable? (Section IV)

• Does VM snapshot reuse lead to reset vulnerabilities?

(Section V)

Along the way we build a methodology for estimating

uncertainty about the RNG state, and, as a result, assessing

the suitability of various sources of entropy. Of course, one

cannot hope to fully characterize software entropy sources in

complex, modern systems, and instead we will use empirical

estimates as also done by prior RNG analyses [9,23]. When

estimating complexity of attacking an RNG, we will be

conservative whenever possible (letting the adversary know

more than realism would dictate). Where vulnerabilities

appear to arise, however, we will evidence the issues with

real attacks.

To accomplish this, we perform detailed measurements of

the Linux RNGs when rebooting a virtual machine and when

resuming from a snapshot. We produced an instrumented

version of the Linux kernel v3.2.35, which we refer to

as the instrumented kernel. The instrumentation records

all inputs submitted to the RNGs, all calls made to the

RNGs to produce outputs, changes to the entropy counts

for each of /dev/(u)random’s pools, and any transfers of bits

between entropy pools. To avoid significant overheads, the

resulting logs are stored in a static buffer in memory, and

are written to disk at the end of an experiment. Our changes

are restricted to the file: /drivers/char/random.c.

There were surprisingly non-trivial engineering challenges

in instrumenting the RNGs, as the breadth of entropy

sources, inherent non-determinism (e.g., event races), and

the potential for instrumentation to modify timing (recall that

time stamps are used as entropy sources) make instrumenta-

tion delicate. For brevity we omit the details. However, we

did validate the correctness of our instrumentation by build-

ing a user-level simulator of the RNGs. It accepts as input

log files as produced by the instrumented kernel, and uses

these to step through the evolution of the state of the RNGs.

This allowed us to verify that we had correctly accounted

for all sources of non-determinism in the RNG system, and,

looking ahead, we use this simulator as a tool for mounting

attacks against the RNGs. For any computationally tractable

attacks, we also verify their efficacy in an unmodified Linux

kernel.

We will publicly release open-source versions of the

instrumented kernel as well as simulator so others can

reproduce our results and/or perform their own analyses in

other settings. Links to open-source code for this project can

be found on the author’s website.

We use the following experimental platforms. For local

experiments, we use a 4-core Intel Xeon E5430 2.67 GHz

CPU (64-bit ISA) with 13 GB of main memory. We use

Ubuntu Linux v12.10 in the Native setup, and we use the

same OS for host and guest VMs. The Xen setup uses Xen

v4.2.1, and the single Xen guest (domU) is configured with a

single CPU and 1 GB of main memory. The cycle counter is

not virtualized on Xen experiments (the default setting). The

VMware setup uses VMware Workstation 9.0.0 with guest

given a single CPU and 2 GB of main memory. On VMware

the cycle counter is virtualized (the default). Although we

performed experiments with Ubuntu, our results should

apply when other Linux distributions are used in either

the host and/or guest. Finally in our EC2 setup, we built

an Amazon Machine Image (AMI) with our instrumented

kernel running on Ubuntu Linux v12.04 (64-bit ISA). All

experiments launched the same AMI on a fresh EBS-backed

m1.small instance in the US East region. In our experimental

setups, there exist no keyboard or mouse inputs, which is

consistent with most VM deployment settings.

IV. BOOT-TIME RNG SECURITY

We examine the behavior of the two Linux RNGs (GRI

and /dev/(u)random) during boot, in particular seeking to

understand the extent to which there exist boot-time entropy

holes (insufficient entropy collection before the first uses of

the RNGs). As mentioned, in the past concerns have been

raised that the Linux RNGs, when running on Amazon EC2,

are so entropy starved that cryptographic key generation

towards the end of boot could be compromised [28]. Our

results refute this, showing that uncertainty in the RNGs

is collected rather rapidly during boot across a variety of

settings. We do, however, expose a boot-time entropy hole

for the very first uses of both GRI and /dev/(u)random. In

both cases the result is that stack canaries generated early

in the boot process do not provide the uncertainty targeted

(to 27 bits of uncertainty from 64 bits due to the weak RNG

output).

We examine the behavior of the two Linux RNGs (GRI

and /dev/(u)random) during boot, in particular seeking to

understand the extent to which there exist boot-time entropy

holes (insufficient entropy collection before the first uses of

the RNGs). As mentioned, in the past concerns have been

raised that the Linux RNGs, when running on Amazon EC2,

are so entropy starved that cryptographic key generation

towards the end of boot could be compromised [28]. Our

results suggest otherwise, showing that uncertainty in the

RNGs is collected rather rapidly during boot across a variety

of settings. We do, however, expose a boot-time entropy hole

for the very first uses of both GRI and /dev/(u)random. In

both cases the result is that stack canaries generated early
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Figure 4. The number of inputs to /dev/(u)random RNG by type of event
during boot on VMware. The y-axis contains number of events (logscale)
bucketed into 3-second bins.

in the boot process do not provide the uncertainty targeted

(from 64 bits of uncertainty to about 27 due to the weak

RNG output).

We perform analyses using the instrumented kernel in the

Native, Xen, VMware, and Amazon EC2 setups (described

in Section III). We perform 200 boots in each environment,

and analyze the resulting log files to assess the security of

the RNGs. After boot, the VM is left idle. We break down

our discussion by RNG, starting with /dev/(u)random.

A. /dev/(u)random boot-time analysis

The graph in Figure 4 displays the quantity and types of

inputs to the RNG for a single boot in the VMware setup

(the other VMware traces are similar). The x-axis is divided

into 100 equal-sized buckets (3 seconds each) and the y-

axis represents the number of occurrences of each input to

the RNG state observed during a single time bucket (on a

logarithmic scale). The majority of RNG inputs during boot

are from disk events and other device interrupts while timer

events are rare. The other platforms (Native, Xen, and EC2)

were qualitatively similar.

Estimating attack complexity. In order to estimate the

security of /dev/(u)random outputs, we seek a lower bound

on the complexity of predicting the state of the RNG

by examining its inputs. Given that we target only lower

bounds, we are conservative and assume the attacker has a

significant amount of information about inputs and outputs

to the RNG. When these conservative estimates show a

possible vulnerability, we check for attacks by a more

realistic attacker.

To establish a lower bound, we define the following con-

servative attack model. The attacker is assumed to know the

initial state of the RNG (this is trivially true when booting

VM images, due to zeroed memory) and the absolute cycle

counter at boot time (the exact value is not typically known).

To estimate the security of output i of /dev/(u)random, we

assume the attacker has access to all preceding RNG outputs

and the exact cycle counter for each output generation,

including the ith output. This means we are assessing a kind

of checkpointing or tracking attack in which the attacker

can utilize knowledge of previous RNG outputs generated

by typical requests to reduce her search space.

We will additionally assume that the exact sequence of

RNG input types and the values of all event descriptions

except the cycle counter are known to the attacker. This

makes the cycle counter the only source of unpredictability

for the attacker. The reason we do this is that, in fact,

the other inputs included in event descriptions such as IRQ

appear to provide relatively little entropy. (Of course a real

attacker would need to predict these values as well, but again

we will be generous to the attacker.)

Input and output events. For a given platform (Xen,

VMware, EC2, or no-virtualization) we analyze the traces

of inputs and outputs of /dev/(u)random starting at boot and

assign an identifier to each input and output event so that

we can compare events across all t trials in each dataset.

We identify input events by the type of event (disk event

or interrupt by IRQ) and the index specific to that event

type in each trial. Grouping identifiers across all t trials, a

given identifier, say (IRQ 16, 20), is a t-dimensional vector

of cycle counter values representing the cycle counters from

the 20th occurrence of interrupts on IRQ 16 across all trials.

Similarly, we group output events by their sequence in

a given trace. To analyze the security of output i, we first

fix a trial, then determine all the input events between the

output and the preceding output (i − 1). We call this input

sequence Si. Grouping inputs into sequences is critical to the

analysis: since we assume the only observable behavior of

/dev/(u)random is the output, then an attacker must correctly

predict all inputs in a given sequence to guess the internal

state of the RNG. The complexity of this operation then

grows exponentially with the length of any input sequence.

We define α ≥ 0 as the number of lower bits of a group

of cycle counters that appear to be uniformly distributed for

any given input event. For any input event, some number of

upper bits may provide some adversarial uncertainty, but for

simplicity we ignore these and focus only on the lowest α
bits.

Statistical test for uniformity. To determine how many

low bits appear to provide uncertainty, we use the

Kolmogorov-Smirnov (KS) 1-sample test [29]. The KS test

determines the maximum difference between the cumulative

distribution function of a set of samples compared to a

reference distribution. We proceed as follows for a candidate

α value and a particular input event which recall consists of

a t-dimensional vector of cycle counters. We mask the upper

(64−α) bits of each cycle counter value to produce a list of

t α-bit values. We then compare these values to the uniform

distribution over [0, 2α − 1] using the KS test. The KS test

564

Authorized licensed use limited to: Loyola University Chicago. Downloaded on December 30,2024 at 17:15:09 UTC from IEEE Xplore.  Restrictions apply. 



rejects any set of samples when the maximum difference

is above some predefined threshold for a given significance

level. Typical significance levels include 0.1, 0.05, 0.025,

and 0.001 [29]; we chose 0.1 which is most conservative

(it favors smaller values for α). We find the largest α that

passes this KS test.

Any given event may be highly correlated with some

previous event and an attacker can use this correlation to

her advantage. To account for this, we also apply the above

tests to relative cycle counter values. That is, for an input

event E we compute, for a previous input or output event

E′, the relative cycle counter value obtained by subtracting

from the cycle counter of E the cycle counter value of E′

(from the same trace). Then we compute the maximum α
that passes the KS test for uniformity using these relative

cycle counter values for E. We repeat this for every event E′

preceding E, and only keep the minimal α value computed.

We also experimented with using a χ2 test in place of KS

in the procedures just described. The results were largely

the same for equivalent significance levels, with the KS test

being slightly more conservative (it chose smaller α values).

We therefore use KS and only report on it.

Computing complexity. For output i from /dev/(u)random,

let Si be sequence of input events that precede i (but occur

after i − 1) and let �i be the length of Si (the number of

input events). Sequence lengths may vary from trial to trial

on the same platform, due to slight timing differences during

the boot sequence. Sequence length is a key component to

the complexity of predicting input values since each input

in a sequence increases the attacker’s search space by a

multiplicative factor. So we compute the complexity of pre-

dicting a given sequence individually for each trial and we

analyze both the minimum and median values. We compute

the complexity of predicting the cycle counters for the events

in input sequence Si as: si =
∑

x∈Si
minAlpha(x). This is

the same as computing the logarithm of the size of the search

tree for cycle counters when the attacker must only predict

the lower αj bits for each event j ∈ Si where the bits are

all independently chosen.

To determine the complexity of predicting output i, we

compute κi = max{s1, s2, . . . , si}. We use maximum

instead of sum for simplicity, since in general the cumulative

complexity is dominated by the most complex sequence.

Again, we compute κi individually for each trial and then

examine the minimum value across all trials.

To summarize, 2κi represents a lower bound on an adver-

sary’s ability to predict the ith output of the RNG during boot

assuming that the low α bits for each event (the α varies

between events) are uniform. Unless specified otherwise, this

will be the standard method for computing lower-bounds on

attack complexity, and although it is a heuristic, we believe

it to be a good one.

Figure 5 shows the complexities for the platforms we

tested during the first few seconds of boot. These values

were computed using t = 200 boots on each platform

using our instrumented kernel. In all cases the first output is

vulnerable; see discussion below. Beyond that, our analysis

shows that the lower-bounds on attacks increase very rapidly,

with Xen and the native platform exhibiting the smallest

complexity for the second output, an attack complexity

of at least 2129. The non-virtualized platform reaches a

minκi = 1024 at output 140 which is generated 4.0 seconds

after boot (not shown). After 5 seconds on all platforms the

attack complexity reaches the maximal value for this RNG:

1024 bits. Note that the times of outputs reported in this

table are relative to the time the Linux kernel is initialized,

which does not include the time in the VM manager’s startup

and guest boot loader (e.g., this is about ∼3.5 seconds in

VMware).
We observe that very long input sequences dominate the

cumulative attack complexity κi, which is not surprising.

In all trials on all platforms, we observed max(�i)) ≥ 395
in the first 5 seconds after boot, that is, all boots have at

least one sequence of 395 or more inputs. This means that

each input cycle counter needs to carry only 2.6 bits of

uncertainty on average for κi to reach its maximum value

of 1024. On a platform with a 1.8 GHz clock (the slowest

platform we tested, EC2), this represents an average jitter

for input events of 2.9ns.
Note that this analysis assumes that the cycle counters of

input events are not under the control of an attacker and that

cycle counter values are not leaked to an attacker through a

side channel. Although such attacks may be possible, they

require an attacker to control or influence nearly all inputs

to the RNG or gain knowledge of nearly all bits of each of

the tens of thousands of inputs that occur during boot.

First output entropy hole. Note that Figure 5 shows that

the complexity of predicting the first output is zero. The first

output of /dev/(u)random always occurs before any inputs

are added to the RNG. Because the VM is supplied with

zeroed memory pages, the Linux RNGs always start in a

predictable state and so this output is deterministic. We

observe this behavior on both VMware and Xen. The first

output, always the 64-bit hexadecimal value 0x22DAE2A8
862AAA4E, is used by boot init stack protector. The cur-

rent cycle counter is added to this RNG output (the canary

equals CC + (CC � 32) where CC is cycle counter) to

initialize the stack canary of the init process. Fortunately, the

cycle counter adds some unpredictability, but our analysis of

the first GRI output (see Section IV-B) indicates that cycle

counters early in boot carry about 27 bits of uncertainty,

which is significantly weaker than the ideal security of 64-

bits for a uniformly random stack canary.

B. GRI boot-time analysis
To predict the 32-bit output of the GRI RNG, an attacker

needs to know the state of the GRI before the call (HV and
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Native Xen VMware EC2
i Ti �i si κi Ti �i si κi Ti �i si κi Ti �i si κi

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0.9 48 129 129 0.1 9 129 129 1.0 66 794 784 1.1 15 216 134
5 1.0 0 0 129 0.2 0 0 700 1.0 0 0 784 1.1 0 0 785

10 1.2 0 0 129 2.1 3 24 1024 5.2 75 1024 784 1.4 0 0 1024
15 3.6 0 0 129 2.1 1 0 1024 5.2 0 0 1024 2.6 1 0 1024

VMware GRI
i Ti κi τi
1 0.3 22 27
2 0.3 33 44
5 0.4 76 94

10 0.4 109 171

Figure 5. (Left) Complexity estimates for predicting the first /dev/(u)random outputs generated during boot. Ti is the maximum time in seconds (relative
to boot start) that output i was requested; �i is median sequence length; si is the median sequence complexity; and κi is the minimum cumulative
complexity across all trials on a given platform. (Right) Complexity estimates for GRI outputs. Here τi is the actual attack complexity (in bits) of the
attack we implemented.

S, 128-bits and 512-bits, respectively) as well as the inputs

used (J , CC, and P ). When booting on a VM, the initial

state of HV and S are all zeroes. S remains zero until it

is initialized from /dev/(u)random (after approximately 100

calls to GRI in our observations). If the correlation between

the jiffies counter J and the cycle counter CC is known

(they are based on the same underlying clock), then the

only unknown to an attacker is CC at the time each output

is generated. The worst case scenario occurs on VMware

where the cycle counter is virtualized by default, and so

begins at 0 each time a VM is booted. In our experiments

with VMware, we observed only 2 unique values of J at the

time the first call to GRI is made. So if an attacker correctly

guesses the CC and it’s associated J value, then futures

values of J can be computed using the ratio of cycles to

timer ticks. We therefore focus only on the cycle counter.

We use a complexity estimate similar to that in the last

section, except that when bounding the complexity for output

i of the GRI RNG we do not assume the attacker knows the

prior outputs. If we did, then each output would only have as

much uncertainty as a single cycle counter carries — the GRI

RNG does not attempt to deal with checkpointing attacks

and never adds entropy except during output generation.

For GRI, we define si to be the minimum number of

lower bits α that appear uniformly distributed across the

cycle counters used when output i is generated across all

t trials. We use the same algorithm for computing α as

we use for /dev/(u)random. Our computation of κi for GRI

differs, we define κi as the sum of all preceding sj values:

κi =
∑

j∈[i] sj . Here we are excluding checkpointing

attacks.

Figure 5 (right table) shows the resulting complexity

estimates κi for the first few outputs i of GRI from 200

boots on VMware (results on Xen and EC2 were similar).

If we exclude the secret value S from GRI, which is a known

value at the start of boot, then GRI has a maximal security

state of 128-bits (the size of its hash chaining variable). GRI

reaches this state after 10 calls, well before the secret value S
is initialized at approximately the 100th call. For the second

output and beyond, predicting the internal state by guessing

inputs is no easier than guessing any single 32-bit output

value. The first value, however, shows less than ideal security

for κ1. We explore this next.

Predicting early GRI outputs. To confirm that, in fact,

there is a vulnerability, we build an attack that works as

follows. First, we collect a dataset of multiple boots using

our instrumented kernel. From each of t traces, we group all

the cycle counters from the first call to GRI, all the cycle

counters from the second, and so on as we did with previous

complexity estimates. Now, however, we select a range of

cycle counters at each depth to include in the attack. To make

the attack more efficient, we search the smallest contiguous

range that covers a fraction (we use 80%) of the observed

cycle counters in the dataset. This excludes some outliers

and provides a moderate speedup of the attack time. We let

τi denote the logarithm of the search space resulting from

this process. Figure 5 shows the values of τi for the first few

outputs using our dataset of 200 boots on VMware with the

instrumented kernel. Again, only the first output is weaker

than the desired 32-bits of security.

To evaluate this interpolated attack model we analyzed the

first call to GRI from each of 100 boots on VMware. We

remove one trace from this dataset (the victim) and train

an attack on the remaining traces to identify a range of

possible values for the cycle counter CC. The remaining

values (HV , J , P and S) are trivially known for the first call

on this platform. We use a GRI simulator and iterate over the

identified range of values for CC. The attack is successful

and we verify that we can produce the full internal state HV ,

not just the output value. This is useful for validation since

collisions are very likely when one tests up to 227 guesses

for a 32-bit number; the probability of a collision is 1 in 32.

A successful attack indicates that security is less than it

should be for the first output. However, we note that taking

advantage of this would require the ability to test which of

the 227 values are correct. This value is the stack canary for

the kthreadd (kernel thread daemon) process. It is not

clear that this weakness can be exploited, but this represents

a failure of the RNG.

V. SNAPSHOT RESUMPTION RNG SECURITY

Modern VM managers allow users to pause a running

VM, make a copy of the entire state (called a snapshot)

of the VM including CPU registers, memory, and disk, and

later use that copy to restart the VM in the exact state at
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Situation Snapshot state Repeats until # bits
(1) Cached entropy UP.ec ∈ [8, 56] UP.ec = 0 UP.ec
(2) Racing fast pool Any IntP overflow ∞
(3) Transfer threshold IP.ec < 192 IP.ec ≥ 192 ∞

Figure 6. Three situations leading to reset vulnerabilities with /dev/uran-
dom. The symbol ∞ represents no limit on the number of repeated output
bits before the condition in the third column is met.

which it was paused. Both Xen and VMware support this,

though Amazon EC2 does not, nor do any other clouds

to our knowledge. Nevertheless, snapshots are often used

in other settings such as backups, security against browser

compromise, and elsewhere [8,26].

We consider two threats related to VM snapshots. First,

we consider VM reset vulnerabilities [26], where resuming

from a snapshot multiple times may lead to the RNG

outputting the same values over and over again. Second, we

consider an attacker that obtains a copy of the VM snapshot

(e.g., if it is distributed publicly), meaning the attacker has

effectively compromised the state of the RNG at the time

of the snapshot. Here the question is whether the attacker

can predict outputs from the RNG or if, instead, the RNG

is able to build up sufficient fresh entropy to recover from

the compromise.

A. Reset vulnerabilities (/dev/(u)random)

We show that /dev/(u)random suffers from VM reset

vulnerabilities: the RNG will return the same output in two

different VM resumptions from the same snapshot. There are

several different situations that give rise to this vulnerability,

all related to the values of the relative entropy counters

and other state at the time the snapshot is taken. Figure 6

summarizes three situations that we have observed lead to

reset vulnerabilities with regards to /dev/urandom. Note that

these situations are not mutually exclusive, though we will

exercise them individually in our experiments. As discussed

below, these situations can also cause repeated outputs from

/dev/random.

We use the following method to exhibit reset vulnerabili-

ties. A guest VM boots under its default, unmodified kernel

and runs for 5 minutes to reach an idle state and starts a

userland measurement process designed to: detect a VM

reset, capture the input pool entropy count (using /proc/fs)

upon resumption, and perform a series of 512-bit reads from

/dev/urandom every 500μs until the experiment completes.

To perform detection, the userland measurement process

runs a loop that samples the (non-virtualized) cycle counter

using the rdtsc instruction and then sleeps briefly (100μs).

When a sufficiently large discrepancy between subsequent

cycle counters is detected (we use 6.6 billion cycles, which

is about 2 seconds), the detection process exits the loop

and begins reading values from /dev/urandom. Thus we be-

gin capturing outputs from /dev/urandom immediately after

snapshot resumption. For each experiment, we captured 10

snapshots while the system is idle, performed 10 resets from

each snapshot and examined the resulting RNG outputs.

We performed experiments on both Xen and VMware.

However, we experienced occasional errors when resuming

from a snapshot on Xen: the guest would occasionally

declare the filesystem readonly (presumably because of some

error upon resumption), and our measurement process was

thus unable to capture RNG outputs to a file. We experienced

no such errors using VMware.

For each 512-bit output produced by /dev/urandom, we

declare an output a repeat if a full match of all 512 bits

occurs in any output from a different reset of the same

snapshot. Note that at 512 bits, a repeat can only occur if

the same RNG state was used (otherwise multiple collisions

against SHA-1 would have had to occur).

(1) Cached entropy. Recall that if the entropy estimate of

a secondary pool (UP or RP) has an entropy count greater

or equal to the number of output bits requested, then the

output is generated directly from the secondary pool without

pulling fresh bits from the input pool IP. We also note that

no cycle counter (or other time stamp value) is added into

the hash at this point in time, which means that the output

of such calls after a reset are fully determined by the state

of the secondary pool at the time of the snapshot.

If the /dev/urandom entropy count has a value of UP.ec =
8n for n > 0 at the time of snapshot, then the bits in the

non-blocking UP pool will be used to satisfy any request

of size ≤ 8n bits without transferring bits from the input

pool. Since the output generation algorithm is deterministic,

this results in repeated output of size ≤ 8n bits under these

conditions. UP.ec has a maximum value of 56 bits because

of the internal mechanics of the RNG and so the maximum

repeated output length is n bytes where n ≤ UP.ec ≤ 7.

The conditions are the same for /dev/random.

(2) Racing the fast pool. Even if a transfer from the input

pool occurs after reset, this alone is does not prevent repeat

outputs. To generate unique outputs, the RNG requires at

least one new input in the input pool and a transfer from

the input pool to the secondary pool (UP or RP). After

a reset, the most likely addition to the input pool is from

the function add interrupt randomness() as these account

for an overwhelming majority of /dev/(u)random inputs. As

described earlier, these inputs are buffered in the interrupt

pool (also called the fast pool) until an overflow event occurs

and the contents of the interrupt pool are mixed into the input

pool. This creates a race condition between interrupt pool

overflow events and reads from /dev/(u)random. An overflow

event occurs every 64 interrupts or if 1 second has passed

since the last overflow when an interrupt input is received.

During this window, reads to /dev/urandom of arbitrary size

will produce repeated outputs.

For /dev/random, repeated outputs will occur during the

same window until /dev/random blocks for new entropy.
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Thus the maximum number of repeated bits from /dev/ran-

dom is 4088.

To exercise this situation for /dev/urandom we used the

experimental procedure above. Because we are comparing

512-bit output values, we can rule out repeats caused by

situation (1), discussed above. To exclude situation (3)

discussed below (which doesn’t involve the input or fast

pool), we want the input pool entropy count to be much

higher than 192. We achieve this by downloading a large file

(1GB) prior to capturing the snapshot. The inbound packets

from the download drive interrupts in the guest kernel which

increases the input pool entropy count. All resumption had

an initial input pool entropy count of at least 1,283 on both

Xen and VMware.

We were not able to exhibit this vulnerability on VMware

with the procedure above. On Xen, 2 snapshots experienced

errors on resumption and produced no usable output. Of the

remaining 8 snapshots, one snapshot produced no repeated

outputs (we didn’t win the race), and the remaining 7

snapshots exhibited at least one repeated 512-bit output

(the first output requested) after resumption. Of these the

maximum duration for repeats was 1.7s after resumption.

This demonstrates that the RNG does a poor job of updating

its state after resumption, due to the (overly) complicated

pool structure and pool-transfer rules.

(3) Input pool entropy count below threshold. The input

pool entropy count IP.ec must reach the transfer threshold

of 192 bits before fresh inputs are transferred from the input

pool to the non-blocking pool UP. While the RNG is in this

state, an unlimited quantity of repeatable output values can

be generated from /dev/urandom. For /dev/random of course,

this is not true, as repeat values will only be provided until

the entropy estimate for the blocking RP pool is exhausted

(as per situation (1) above).

To arrange this situation, immediately before capturing the

snapshot, we execute a 10 second read from /dev/random to

reduce the input pool entropy count below 64 and trigger

this condition.

On both VMware and Xen, the maximum value for IP.ec
upon resumption was 48 — sufficient to put the RNG into

situation (3). On VMware, we observed that all snapshots
produced repeat outputs for the duration of the experiment

(30 seconds). Results on Xen were similar (excluding failed

resumptions). This indicates that if IP.ec is very low when

a snapshot is captured, it may take more than 30 seconds

for the /dev/random RNG to reach a secure state.

Entropy starvation attack for situation (3). In Section II

we observed that there exists a simple entropy starvation

attack against /dev/urandom, where a (malicious) user-level

process simply performs continuous reads from /dev/ran-

dom. The internal logic of the RNG is such that in this

case the input pool will always transfer to the blocking

RP pool, and never the UP pool. This can be used to

extend the amount of time that /dev/urandom produces

repeated outputs in situation (3) where the input pool entropy

count is below the threshold to transfer bits from IP to

UP. An adversary with the ability to run an unprivileged

process on the system can easily engage this condition

by reading from /dev/random. If a remote attacker makes

(legitimate) requests to a public interface that triggers large

of frequent reads from /dev/random, then the same effect

may be possible without requiring a local account.

The experimental procedure above was used with the

following deviations. We execute a continuous read from

/dev/random (dd if=/dev/random) for the duration of

the experiment. After reset, the measurement process per-

forms 512-bit reads from /dev/urandom every 1 second for

a duration of 120 seconds. Upon resumption, all snapshots

exhibited repeated 512-bit outputs for the duration of the

experiment on both VMware and Xen (excluding failed

resumptions).

Impact on OpenSSL. The experiments above show that

reset vulnerabilities exist in /dev/(u)random, and give appli-

cations stale random values after resumption. We now briefly

investigate the potential for this to lead to exploitable vul-

nerabilities against applications relying on /dev/urandom for

randomness after a VM resumption. We focus on OpenSSL

v1.0.1e and RSA key generation. When calling openssl
genrsa from the command line, OpenSSL seeds its internal

RNG with 32 bytes read from /dev/urandom as well as the

current system time, process ID, and dirty memory buffers.

We instrument this version of OpenSSL in order to observe

internal values of the key generation process. We then set up

a VM running an unmodified Linux kernel on VMware that

will, immediately after being reset, execute the command

openssl genrsa from the shell. We observe that just

connecting to the VM via SSH to prepare it for a snapshot

typically drives the input pool entropy count below 192

before we take a snapshot. This is caused because a number

of processes are created during login and each new process

consumes many bytes from /dev/urandom to initialize stack

canaries and perform ASLR.

We captured 27 snapshots, performed 2 resets from each

snapshot and then analyzed the resulting outputs from the

OpenSSL instrumentation and OpenSSL’s normal output.

A single snapshot produced an identical prime p in the

private key in both resets, but other values in the private

key differed. Presumably, after the prime p was generated,

differing dirty memory buffers caused the OpenSSL RNGs

to diverge. (Knowing one prime value of a private key

is sufficient to derive the other and destroys the security

of an RSA private key.) Of the remaining 26 snapshots,

many had identical /dev/urandom output, but typically the

dirty memory buffers differed early enough in execution

to produce unique outputs. These dirty memory buffers

are likely different between resets because Address Space
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Layout Randomization (ASLR) (determined in part by GRI)

shifts around the OpenSSL memory layout.

To validate this hypothesis, we then disabled ASLR on

the guest VM prior to taking a snapshot by executing echo
0 > /proc/sys/kernel/randomize_va_space
as root and repeat our experiment for 30 snapshots with 2

resets from each snapshot. Of these, 23 snapshots produced

repeated output from /dev/urandom and identical RSA
private keys. The other 7 snapshots had input at least

1 differing value into the OpenSSL RNG after reset —

variously this differing value was one of /dev/urandom

output, PID, or system time.

We note that unlike prior reset vulnerabilities [26], these

are the first to be shown in which the system RNG is invoked

after VM resumption. In [26], the authors ask whether

consuming fresh random bytes from the system RNG after
a reset is sufficient to eliminate reset vulnerabilities in

applications. This answers that question in the negative, and

highlights clear problems with the /dev/(u)random design for

settings where snapshots are employed.

Reset vulnerabilities on FreeBSD. We also perform a

limited set of experiments with snapshot resumptions using

an (uninstrumented) version of FreeBSD within VMware,

to see if reset vulnerabilities affect other RNG designs (a

description of FreeBSD’s design is given in [13]). In each

of three resets using the same snapshot, we took 10 samples,

512 bits each, from /dev/random (same as /dev/urandom on

FreeBSD) one millisecond after reset. In all three resets the

same sequence of outputs were produced. This is a very

narrow window, and may not be practically exploitable, but

we admit that we did not test longer time windows.

Reset vulnerabilities on Windows. We perform similar

experiments on Microsoft Windows 7 running in VMware

using the rand s() random number generator interface. In

Windows, rand s() produces a single, 32-bit random output

value for each call. In all resets from 5 different snapshots

using various timings and number of samples, rand s()

reliably produced repeated 32-bit outputs multiple resets of

the same snapshot. In all cases, at least 25% of outputs are

repeated. In a separate experiment, we perform 10 resets

from the same snapshot, and after reset we sample a single

32-bit output every 1s for a total of 2000 samples (collected

over more than 30 minutes). We found more than 500 (25%)

repeated outputs shared between each pair of resets, and

some pairs have 1000 (50%) repeated outputs. We also

observe that all 2000 outputs generated in the first reset are

found in some combination of the following 9 trials. This

security vulnerability has been reported to Microsoft.

Our experiments on FreeBSD and Windows were very

limited, but are sufficient to demonstrate that the problem of

RNG reset vulnerabilities extends beyond the Linux RNGs.

B. Reset vulnerabilities (GRI)

As described in Section II, the output of the GRI RNG

depends only on the state values HV and secret S and the

inputs cycle counter, jiffies and PID (CC, J , P ). Across

multiple resets from the same snapshot, it’s very plausible

for the same process (with same PID P ) to be the first to

request an output. So the only new information after a snap-

shot resumption is the cycle counter value. For a virtualized

cycle counter, in which the cycle counter value will always

start from the same value (stored in the snapshot), we might

expect reset vulnerabilities. In fact we observe no repeated

values output by GRI across any of its invocations in any of

the 50 resets on VMware that we performed. This can likely

be attributed to small variations in timing between snapshot

resumption and the first call to GRI. For 10,000 Xen resets,

with the non-virtualized RDTSC, we did not see any repeats

as well.

C. Snapshot Compromise Vulnerabilities

If a snapshot is disclosed to an attacker, then one must

assume that all of the memory contents are available to them.

Not only is there likely to be data in memory of immediate

damage to an unwitting future user of the snapshot (e.g.,

secret keys cached in memory), but the RNG state is

exposed. While we can’t hope to prevent cached secret keys

from leaking, we might hope that the RNG recovers from

this state compromise when later run from the snapshot. As

we saw above, predicting future /dev/(u)random in various

situations is trivial since the attacker can often just run the

snapshot (on similar hardware). When not in these situations,

however, and for GRI, we would like to estimate the the

complexity of using the compromised state to attempt to

predict outputs generated after a later snapshot resumption.

We use the same methodology as used above with Xen,

with the workload that reads from /dev/urandom repeatedly

after snapshot resumption. We then use our methodology

from Section IV to give lower-bound estimates on the com-

plexity of predicting the very first few outputs to /dev/uran-

dom or GRI.

Figure 7 shows our estimated attack complexity after

reset. The complexity estimates for the /dev/urandom outputs

are much smaller than for their boot time counterparts

(Figure 5 in Section IV). The security of the GRI outputs

is similar to boot because GRI security under our model

is driven only by the cumulative uncertainty of the cycle

counters from each output request. However, /dev/urandom

outputs have security dominated by the input sequence

length �i. There are far fewer inputs during a resump-

tion than at boot. This suggests possible vulnerability to

prediction attacks, but for brevity we do not pursue them

further having already shown above that repeats give rise to

predictable outputs.
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/dev/(u)random GRI
i Ti �i κi Ti κi

1 0.7 ms 2 0 21 s 22
2 1.4 ms 2 20 21 s 33
5 4.1 ms 2 27 21 s 66
10 7.1 ms 2 27 21 s 105

Figure 7. The minimum estimated complexity κi to predict the first
few outputs of /dev/(u)random and GRI after a Xen guest is reset from a
snapshot. Ti is the time that output i is generated (relative to resumption);
�i is the median sequence length.

VI. THE WHIRLWIND RNG

In this section we detail the Whirlwind RNG, which

provides a simpler, faster, and more secure randomness

service. While our measurement study focused primarily

on virtual environments, the design of Whirlwind seeks to

provide security for a variety of settings and in general be

a drop-in replacement for both /dev/(u)random and GRI. As

such, we must handle a variety of goals:

• Simplicity: The current /dev/(u)random design is com-

plex, requiring significant effort to understand and audit

its design and implementation (with 1041 lines of

code) [11]. In contrast, Whirlwind targets simplicity and

requires 676 lines of code.

• Virtualization security: Unlike all prior RNG designs

we are aware of, Whirlwind is explicitly designed to

provide security even in virtualized environments that

might entail VM snapshot and image reuse.

• Fast entropy addition: Whirlwind uses a simple en-

tropy gathering function designed to be fast, usually

it requires only 0.5μs on our 2.67 GHz platform,

though 1/8 of the invocations it computes a single SHA-

512 compression. Despite using a slower hash function

(SHA-512), we show it to be about as fast as entropy

addition in the current /dev/(u)random. Whirlwind uses

per-CPU input buffers to reduce lock contention and

permit the amount of buffered inputs to scale with the

number of CPUs.

• Cryptographically sound: We propose a new design for

the cryptographic core of Whirlwind, inspired by the

recent work of [6]. Whirlwind dispenses with the linear

feedback shift registers of Linux /dev/(u)random, and

achieves the robustness security goal detailed in [6].

• Immediately deployable: The basic Whirlwind design

is a drop-in replacement for Linux /dev/(u)random, and

requires no hypervisor support.

A. Whirlwind design

Figure 8 depicts the main components of Whirlwind. It

uses two entropy pools, a fast pool and a slow pool, as done

in FreeBSD’s Yarrow RNG [13]. The fast pool consists of a

per-CPU input buffer Ifast and a single (global) seed value

Sfast for the fast pool. The slow pool consists of a per-

CPU input buffer Islow, a private (internal) seed S′
slow, and

Sfast

Ifast

Islow

S′
slow

d

h

h p Sslow

Input

Figure 8. Block diagram of the Whirlwind RNG. Every dth input is
directed to the slow pool, and after p updates it is for use in output
generation. Here h is the SHA-512 compression function.

a public seed Sslow. In our implementation all input buffers

are 1024 bits in size which corresponds to one full message

block for SHA-512. All three seeds in our implementation

are 512 bits, which represents a chaining value for SHA-512.

We denote the SHA-512 compression function by h and the

SHA-512 hash function by H . Let n be the number of bits

of output for both h and H . We initialize the seeds values

as: Sfast ← h(IV, 1) and Sfast ← h(IV, 2) where IV is

the SHA-512 initialization vector and 1 and 2 are encoded

in some unambiguous manner [25].

Inputs are written to the fast pool Ifast by default and

every dth input is diverted to the slow pool Islow. In our

implementation d = 10 which ensures that the fast pool

receives the majority of inputs and thus changes rapidly

even in low-entropy conditions. Each input is 128-bits and

consists of the input source’s unique identifier (created by

the GCC macro __COUNTER__ and encoded using 32 bits),

the lower 32 bits of the cycle counter (or jiffies on platforms

without a valid cycle counter), and 64 bits of optional,

source-provided information. Input buffers are per-CPU,

obviating the need for locking to process most inputs. We

denote the macro used for adding inputs by ww add input().

When an input pool is full (after 8 inputs are written

to a pool), a SHA-512 compression function application

is performed, with the chaining variable equal to the pool

seed value Sfast or S′
slow and the message block equal to

the input pool. The result becomes the new seed for that

pool. Locks are used to ensure that the compression function

is computed atomically. Thus, Whirlwind is computing a

hash over the sequence of inputs in an online fashion. This

ensures the robustness security property introduced by Dodis

et al. [6] and which they showed Linux’s /dev/(u)random

fails to achieve. Robustness requires (informally speaking)

that no matter where entropy resides in the sequence of

inputs to the RNG the RNG outputs always benefit from

the added entropy.

In the case of the slow pool, the internal seed S′
slow is

used as the hash chaining value and upon every pth hash the

internal seed S′
slow is copied to the public seed Sslow. This

ensures that the slow pool represents a multiple of p times as
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Algorithm 1 ww generate bytes(b)
s1 ← Sfast

s2 ← Sslow

t← �8b/n	
ctr ← atomic inc(Ctr, t)− t
hw ← read hw random()

ww add input()

for i = 0 to t do
CC ← get cycle counter()

output[i] ← H(3 || s1 || s2 || (ctr + i) || CC || P || hw )

end for
ww add input()

Sfast ← h(Sfast, 0
1024)

return first b bytes of output

Routine for generating b bytes of output from the Whirlwind RNG. The

variable Ctr is a global output counter.

many inputs as the fast pool. In our implementation p = 50,

which, combined with d = 10, means the public slow seed

is updated every 500 inputs.

Consumers within the kernel request random values from

Whirlwind using get random int() or get random bytes().

From user mode, processes read random values via the exist-

ing /dev/random or /dev/urandom read interfaces. Whirlwind

handles all such requests in the same manner and, in par-

ticular, we have completely removed the GRI RNG and we

do not differentiate between /dev/random and /dev/urandom.

The current implementation does not support writing to the

RNG from user-level processes, though it would be easy to

add.

Algorithm 1 describes output generation in pseudocode.

When Whirlwind receives an output request for b bytes,

the RNG first copies the slow and fast pool seeds from

static (global) memory into local memory on the stack.

Whirlwind then prepares a response by computing a SHA-

512 hash over the concatenation of: (1) the local copy of

the slow pool seed; (2) the local copy of the fast pool

seed; (3) a 64-bit request counter Ctr; (4) the current cycle

counter CC; and (5) 64-bits read from a CPU hardware

RNG (e.g., RDRAND), if available. The request counter

Ctr is atomically pre-incremented for the number of blocks

requested (to reserve counter values for output generation)

and is incremented locally for each block of output. This

ensures that even if concurrent requests have identical values

(seeds, P,CC) the outputs are guaranteed to be unique. Two

inputs are fed back into the RNG for each output requested.

Finally, a single application of h is used to ensure forward

security.

Initializing Whirlwind. We also include one special mech-

anism for quickly initializing (or refreshing) the entropy of

Whirlwind, which is needed to prevent a boot-time entropy

hole (like the ones in the legacy RNG, see Section IV) and

to recover from a VM reset. For boot time, we would have

liked to use the recent suggestion of Mowery et al. [23]

Algorithm 2 ww bootstrap()

for i← 0 to � do
CC ← get cycle counter()
ww add input()
k ← CC mod �max

for j ← 0 to k do
a← (j/(CC + 1))− (a ∗ i)

end for
end for

The Whirlwind entropy bootstrapping mechanism used during boot and
snapshot resumption. The values � and �max are configured parameters
(default 100, 1024).

to quickly generate entropy in the initial stages of boot via

timing of functions in the kernel init function. Unfortunately,

this is not fast enough for us, since we observe reads to the

RNG early in init. We therefore use an approach based on

timing of instructions that may take a variable number of

cycles, which has been suggested and used previously [1,24].

This provides nondeterminism (by way of contention and

races within the CPU state), as shown in prior studies [20].

Pseudocode is shown in Algorithm 2. In our implementation

we have � = 100 and �max = 1024.

Whirlwind calls this entropy timing loop before the first

use of the RNG during boot, and at the start of resumption

from a snapshot. The latter takes advantage of Xen’s resume
callback, which is a virtual interrupt delivered to the guest

OS when it first starts following a snapshot resumption.

Similar facilities exist in other hypervisors.

Entropy sources. It is easy to add entropy sources to

Whirlwind, by simply inserting ww add input() in appropri-

ate places. This requires no understanding of RNG internals

(such as the role of entropy estimates), unlike in the existing

Linux /dev/(u)random. In terms of performance, submitting

an input to the RNG is fast, but may still require a single

SHA-512 compression function call on the critical path.

While we expect that, in deployment, Whirlwind might use

a wider set of entropy sources, for comparison purposes, we

restrict our experiments here to use only the same set of en-

tropy sources as used by the current /dev/(u)random imple-

mentation in Linux as well as those called in ww bootstrap()

and ww generate bytes().

Hypervisor-provided entropy. As we show below, the

already-mentioned software-based sources are already suffi-

cient to provide security during boots and resets. Some users

may nevertheless desire (for defense-in-depth) support for

the Xen management Dom0 VM (also running Whirlwind)

to provide an additional entropy source for a guest VM’s

Whirlwind RNG. In current practice, host-to-guest entropy

injection is facilitated via virtual hardware RNGs, that then

are fed into the Linux /dev/(u)random by way of a user-level

daemon (rngd). Unlike these systems, we will ensure host-

provided entropy is inserted into Whirlwind immediately

after a VM resumption, before any outputs are generated.
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To do so, we pass additional entropy with the Xenstore
facility in Xen, which uses shared memory pages between

Dom0 (the management VM) and the guest VM to provide a

hierarchical key-value store. We modified Dom0 to read 128

bytes from /dev/urandom and write the value to Xenstore.

During a resume callback, Whirlwind detects that a reset

occurred, reads the value from Xenstore and adds the value

to the RNG via repeated input events. All this requires less

than 30 lines of modification to Xen’s operation library

libxl. The entire operation requires 75 ms on average, and

the rareness of the operation (once per resumption) makes

this tolerable.

Other instantiations. For concreteness, we chose several

suggested values of (sometimes implicit) parameters, but it

is easy to modify the Whirlwind implementation to support

different choices. For instance, instead of letting h be the

SHA-512 compression function, one could use the full

SHA-512 (or some other secure hash, such as SHA-3),

which leads to the RNG computing a hash chain. The

approach detailed is faster because it reduces the number of

compression function calls. One might also use SHA-256,

smaller or larger seed values (to trigger hashing more or less

frequently), and the like. Additionally, we choose the output

generation hash H as the full SHA-512. Again, this can be

replaced with any suitable hash function or even AES in a

one-way mode such as Davies-Meyer mode [31].

B. Security evaluation

We evaluate the boot-time and reset security of Whirl-

wind. We perform 50 reboots in Xen from a particular

using an instrumented version of the Linux kernel using

Whirlwind. We also perform 50 resets from a single Xen

snapshot captured while idling (5 minutes after boot); a user

level process requests 512-bit outputs from the RNG every

500μs after resumption. As before, the instrumentation

records all inputs and outputs to the Whirlwind RNG. We

then perform complexity analysis as done for the legacy

/dev/(u)random (see Section IV), which again ignores all

input sources except the cycle counter. This provides a

conservative estimate of unpredictability from the attacker’s

perspective. As intended, the adversarial uncertainty regard-

ing the Whirlwind internal state hits 1024 (the maximal

amount) before the first use of the RNG either during boot

or after a reset. An immediate implication is that reset

vulnerabilities are avoided: the probability of repeated output

arising from reuse of the same snapshot is negligible.
We have not yet evaluated Whirlwind’s entropy accumula-

tion on low-end systems, such as embedded systems [12,23].

In particular, here the cycle timing loop may provide less

uncertainty because embedded system CPUs themselves

have less non-determinism. In these settings, however, we

do not expect to be using VM snapshots (making this use

moot) and for generating entropy at boot we can use the

techniques of [23].

Throughput (/dev/urandom)
Block size Whirlwind (MB/s) Legacy (MB/s)

4 bytes 0.6 1.6
16 bytes 2.3 4.9
64 bytes 9.3 9.0

256 bytes 21.8 12.0

Figure 9. Comparing performance of the Whirlwind and legacy /dev/u-
random implementations using dd to read 10,000 blocks of various sizes.

C. Performance evaluation

We turn to evaluating the performance of Whirlwind,

particularly in comparison to the existing /dev/(u)random

and GRI RNGs. Our Whirlwind implementation uses SHA-

512 as opposed to SHA-1 (resp. MD5 for GRI), so we

expect to see a performance penalty from the use of stronger

cryptography. To compare, we evaluated the throughput of

reading from /dev/urandom and GRI for both Whirlwind

and the legacy RNGs. While the system is otherwise idle,

we execute reads of 10,000 blocks on the /dev/urandom

interface for various block sizes using dd. We repeat this 100

times for each block size and report the average throughput

in Figure 9. As expected, the legacy RNG performs slightly

better at smaller block sizes (≤ 16 byte), but is outperformed

by Whirlwind at 64 and 256 byte block sizes.

We also compare measured performance of adding inputs

to the new and legacy RNGs. We add minimal instrumen-

tation to time these operations and measure performance

during VM boots, resets, and during idle time. We also use

these runs to measure performance of reading from GRI. The

resulting performance data indicate the various functions

were timed more than 100,000 times for each RNG. The

results are that while input processing for /dev/(u)random is

as fast in Whirlwind as in the legacy RNG, the GRI output

interface requires 10.3μs (one standard deviation is ±1.8)

for Whirlwind but the legacy RNG requires only 1.0μs

(±0.5).

To the best of our knowledge GRI is only used during

process creation. In order to understand whether the GRI

slowdown will cause problems in applications, we run the

fork benchmark from LMbench [22] 100 times. The average

latency of fork is 414μs (with standard deviation ±5μs)

for the legacy RNG, and 418μs (±5μs) for kernel with

Whirlwind. Thus Whirlwind incurs only 1% overhead in

this (worst-case) benchmark, and so we believe this is not a

problem for practical use.

Lastly, we evaluate the overhead of ww bootstrap()

(Algorithm 2) used at boot and snapshot resumption. The

time to execute the timing loops has a mean of 0.7 ms over

50 runs. Boot and snapshot resumption are rare operations,

suggesting this level of overhead will not impact deploy-

ments.

Overall we conclude that Whirlwind has performance

closely matching the existing RNGs, and in some cases

even better despite using more expensive (and more secure!)
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cryptographic primitives. For this, we get a significantly

simplified design and improved security.

VII. RELATED WORK

Many high profile RNG failures have been reported over

the years, including ones leading to: attacks against the

Secure Socket Layer (SSL) implementation of an early

Netscape web browser [10]; the ability to cheat cheat at

online poker [2]; insecure random values in Microsoft Win-

dows [7]; predictable host keys in Debian OpenSSL [32];

jailbreaks against the Sony’s PlayStation 3 [4]; factorizable

RSA private keys generated on embedded systems [12];

predictable outputs in the OpenSSL RNG on Android [17];

and factoring RSA private keys that protect digital IDs on

government-issued smart cards in Taiwan [5].

Several previous papers analyzed the Linux

/dev/(u)random RNG. Gutterman et al. [11] provided

the first: they reverse-engineer the design of the RNG from

the source code (attesting to its complexity!); highlight

problems in the hashing steps (that were subsequently

fixed and the version we analyze includes these fixes);

and point out that in some constrained environments such

as embedded systems or network routers there might be

insufficient entropy provided to the RNG. Heninger et

al. [12] show that embedded Linux systems suffer from

a boot-time entropy hole which leads to exposure of

cryptographic secret keys generated on affected devices.

Mowery et al. [23] look to fill this boot-time entropy

hole by way of timing functions in kernel initialization.

Vuillemin et al. [9] perform an in-depth, empirical analysis

of entropy transfers in Linux /dev/(u)random, and show

that most consumers are in the kernel.

Dodis et al. [6], building off earlier work by Barak

and Halevi [3], suggest that the cryptographic extraction

component of RNGs should be robust, meaning an RNG

should guarantee entropy is collected no matter the rate of

entropy in the input stream. They show that /dev/(u)random

is not robust, but do not show attacks that would affect

practice. Part of the Whirlwind design is inspired by their

online hashing based extractor, though they use universal

hash functions and we use cryptographic ones.

None of the above consider RNG performance in modern

virtualized environments. We also do not know of any

analyses of the GRI RNG before our work.

Turning to virtualized settings, Garfinkel and Rosen-

blum [8] hypothesized that VM reset vulnerabilities may ex-

ist when reusing VM snapshots, and analyses by Ristenpart

and Yilek [26], uncovered actual vulnerabilities in user-level

processes such as Apache mod ssl that cache randomness in

memory before use. In these settings, the user-level process

never invoked /dev/urandom (or /dev/random) after VM

resumption, and in particular they left as an open question

whether system RNGs suffer from reset vulnerabilities as

well. We answer this question, unfortunately, in the positive,

suggesting that using /dev/urandom right before randomness

use is not a valid countermeasure with the existing design,

though it will be with Whirlwind.

In [28], the authors hypothesize that booting multiple

times from the same VM image in an infrastructure-as-a-

service (IaaS) setting such as Amazon’s EC2 may enable

attackers to predict /dev/(u)random RNG outputs that can

lead to SSH host key compromises. Our analyses suggest

that such an attack is infeasible for all uses of the Linux

RNGs beyond the first during boot.

Thompson et al. [30] point out the potential for a mali-

cious hypervisor to snoop on the entropy pools of a guest

VM. Kerrigan et al. [15] investigate entropy pool poisoning

attacks, where one guest VM in a cloud setting attempts

to interfere with another’s entropy pool by (say) sending

interrupts at a known frequency to the guest. Theirs is

a negative result, with their experiments showing that the

attack fails. Our measurements corroborate this: even just

a few bits of uncertainty about cycle counters leads to an

unpredictable RNG state even in the current /dev/(u)random

implementation. We also investigate using such interrupt

injection as a defense.

Finally, we use CPU timing jitter as an entropy source as

used in other systems, such as the haveged entropy daemon

and the CPU jitter RNG [1,24].

VIII. CONCLUSIONS

In this work, we performed the first analysis of the secu-

rity of the Linux system random number generators (RNGs)

when operating in virtualized environments including Xen,

VMware, and Amazon EC2. While our empirical measure-

ments estimate that cycle counters in these settings (whether

virtualized or not) provide a ready source of uncertainty from

an attacker’s point of view, deficiencies in the design of

the /dev/(u)random RNG make it vulnerable to VM reset

vulnerabilities which cause catastrophic reuse of internal

state values when generating supposedly “random” outputs.

Both the /dev/(u)random and kernel-only GRI RNGs also

suffer from a small boot-time entropy hole in which the very

first output from either is more predictable than it should be.

Our second main contribution is a new design for system

RNGs called Whirlwind. It rectifies the problems of the

existing Linux RNGs, while being simpler, faster, and using

a sound cryptographic extraction process. We have imple-

mented and tested Whirlwind in virtualized environments.

Our results showed that Whirlwind enjoys performance

equal (and sometimes even better) than the previous RNG.
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