
Improving the Reliability of Commodity Operating
Systems

MICHAEL M. SWIFT, BRIAN N. BERSHAD, and HENRY M. LEVY

University of Washington

Despite decades of research in extensible operating system technology, extensions such as device

drivers remain a significant cause of system failures. In Windows XP, for example, drivers account
for 85% of recently reported failures.

This paper describes Nooks, a reliability subsystem that seeks to greatly enhance OS reliability

by isolating the OS from driver failures. The Nooks approach is practical: rather than guaranteeing
complete fault tolerance through a new (and incompatible) OS or driver architecture, our goal is

to prevent the vast majority of driver-caused crashes with little or no change to existing driver

and system code. Nooks isolates drivers within lightweight protection domains inside the kernel
address space, where hardware and software prevent them from corrupting the kernel. Nooks also

tracks a driver’s use of kernel resources to facilitate automatic clean-up during recovery.
To prove the viability of our approach, we implemented Nooks in the Linux operating system

and used it to fault-isolate several device drivers. Our results show that Nooks offers a substantial

increase in the reliability of operating systems, catching and quickly recovering from many faults
that would otherwise crash the system. Under a wide range and number of fault conditions, we

show that Nooks recovers automatically from 99% of the faults that otherwise cause Linux to

crash.
While Nooks was designed for drivers, our techniques generalize to other kernel extensions.

We demonstrate this by isolating a kernel-mode file system and an in-kernel Internet service.

Overall, because Nooks supports existing C-language extensions, runs on a commodity operating
system and hardware, and enables automated recovery, it represents a substantial step beyond

the specialized architectures and type-safe languages required by previous efforts directed at safe

extensibility.

Categories and Subject Descriptors: D.4.5 [Operating Systems]: Reliability—fault tolerance

General Terms: Reliability, Management

Additional Key Words and Phrases: Recovery, Device Drivers, Virtual Memory, Protection, I/O

Authors address: Department of Computer Science and Engineering, University of Washington,
Seattle, WA 98195, USA.

Permission to make digital/hard copy of all or part of this material without fee for personal

or classroom use provided that the copies are not made or distributed for profit or commercial

advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0000-0000/20YY/0000-0001 $5.00 c© 2003 ACM xxxx-xxxx/03/xxxx-xxxx $00.75
Permission to make digital/hard copy of all or part of this material without fee for personal

or classroom use provided that the copies are not made or distributed for profit or commercial

advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0000-0000/20YY/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1–33.

2 · Michael M. Swift et al.

1. INTRODUCTION

This paper describes the architecture, implementation, and performance of Nooks,
a new operating system subsystem that allows existing OS extensions (such as
device drivers and loadable file systems) to execute safely in commodity kernels.
In contemporary systems, any fault in a kernel extension can corrupt vital kernel
data, causing the system to crash. To reduce the threat of extension failures, Nooks
executes each extension in a lightweight kernel protection domain – a privileged
kernel-mode environment with restricted write access to kernel memory. Nooks’
interposition services track and validate all modifications to kernel data structures
performed by the kernel-mode extension, thereby trapping bugs as they occur and
facilitating subsequent automatic recovery.

Three factors motivated our research. First, computer system reliability remains
a crucial but unsolved problem [Gillen et al. 2002; Patterson et al. 2002]. While
the cost of high-performance computing continues to drop, the cost of failures (e.g.,
downtime on a stock exchange or e-commerce server, or the manpower required to
service a help-desk request in an office environment) continues to rise. In addition,
the growing sector of “unmanaged” systems, such as digital appliances and con-
sumer devices based on commodity hardware and software [Hewlett Packard 2001;
TiVo Corporation 2001], amplifies the need for reliability.

Second, OS extensions have become increasingly prevalent in commodity systems
such as Linux (where they are called modules [Bovet and Cesati 2001]) and Windows
(where they are called drivers [Custer 1993]). Extensions are optional components
that reside in the kernel address space and typically communicate with the kernel
through published interfaces. In addition to device drivers, extensions include file
systems, virus detectors, and network protocols. Extensions now account for over
70% of Linux kernel code [Chou et al. 2001], while over 35,000 different drivers with
over 120,000 versions exist on Windows XP desktops [Short 2003]. Many, if not
most, of these extensions are written by programmers significantly less experienced
in kernel organization and programming than those who built the operating system
itself.

Third, extensions are a leading cause of operating system failure. In Windows
XP, for example, drivers cause 85% of recently reported failures [Short 2003]. In
Linux, the frequency of coding errors is seven times higher for device drivers than
for the rest of the kernel [Chou et al. 2001]. While the core operating system
kernel reaches high levels of reliability due to longevity and repeated testing, the
extended operating system cannot be tested completely. With tens of thousands of
extensions, operating system vendors cannot even identify them all, let alone test
all possible combinations used in the marketplace.

Improving OS reliability will therefore require systems to become highly tolerant
of failures in drivers and other extensions. Furthermore, the hundreds of millions
of existing systems executing tens of thousands of extensions demand a reliability
solution that is at once backward compatible and efficient for common extensions.
Backward compatibility improves the reliability of already deployed systems. Effi-
ciency avoids the classic tradeoff between robustness and performance.

Our focus on extensibility and reliability is not new. The last twenty years
have produced a substantial amount of research on improving extensibility and
ACM Journal Name, Vol. V, No. N, Month 20YY.

Improving the Reliability of Commodity Operating Systems · 3

reliability through the use of new kernel architectures [Engler et al. 1995], new
driver architectures [Project-UDI 1999], user-level extensions [Forin et al. 1991;
Liedtke 1995; Young et al. 1986], new hardware [Fabry 1974; Witchel et al. 2002],
or type-safe languages [Bershad et al. 1995].

While many of the underlying techniques used in Nooks have been used in pre-
vious systems, Nooks differs from earlier efforts in two key ways. First, we target
existing extensions for commodity operating systems rather than propose a new ex-
tension architecture. We want today’s extensions to execute on today’s platforms
without change if possible. Second, we use C, a conventional programming lan-
guage. We do not ask developers to change languages, development environments,
or, most importantly, perspective. Overall, we focus on a single and very serious
problem – reducing the huge number of crashes due to drivers and other extensions.

We implemented a prototype of Nooks in the Linux operating system and exper-
imented with a variety of kernel extension types, including several device drivers,
a file system, and a kernel Web server. Using automatic fault injection [Hsueh
et al. 1997], we show that when injecting synthetic bugs into extensions, Nooks can
gracefully recover and restart the extension in 99% of the cases that cause Linux to
crash. In addition, Nooks recovered from all of the common causes of kernel crashes
that we manually inserted. Extension recovery occurs quickly, as compared to a full
system reboot, leaving most applications running. For drivers – the most common
extension type – the impact on performance is low to moderate. Finally, of the eight
kernel extensions we isolated with Nooks, seven required no code changes, while
only 13 lines changed in the eighth. Although our prototype is Linux based, we
expect that the architecture and many implementation features would port readily
to other commodity operating systems.

The rest of this paper describes the design, implementation and performance of
Nooks. The next section describes the system’s guiding principles and high-level
architecture. Section 3 discusses the system’s implementation on Linux. We present
experiments that evaluate the reliability of Nooks in Section 4 and its performance
in Section 5. We then summarize related work in OS extensibility and reliability.
Section 7 summarizes our work and draws conclusions.

2. ARCHITECTURE

The Nooks architecture is based on two core principles:

(1) Design for fault resistance, not fault tolerance. The system must prevent and
recover from most, but not necessarily all, extension failures.

(2) Design for mistakes, not abuse. Extensions are generally well-behaved but may
fail due to errors in design or implementation.

From the first principle, we are not seeking a complete solution for all possible
extension errors. However, since extensions cause the vast majority of system fail-
ures, eliminating most extension errors will substantially improve system reliability.
From the second principle, we have chosen to occupy the design space somewhere
between “unprotected” and “safe.” That is, the extension architecture for conven-
tional operating systems (such as Linux or Windows) is unprotected: nearly any bug
within the extension can corrupt or crash the rest of the system. In contrast, safe

ACM Journal Name, Vol. V, No. N, Month 20YY.

4 · Michael M. Swift et al.

systems (such as SPIN [Bershad et al. 1995] or the Java Virtual Machine [Gosling
et al. 1996]) strictly limit extension behavior and thus make no distinction between
buggy and malicious code. We trust kernel extensions not to be malicious, but we
do not trust them not to be buggy.

The practical impact of these principles is substantial, both positively and neg-
atively. On the positive side, it allows us to define an architecture that directly
supports existing driver code with only moderate performance costs. On the nega-
tive side, our solution does not detect or recover from 100% of all possible failures
and can be easily circumvented by malicious code acting within the kernel. As ex-
amples, consider a malfunctioning driver that continues to run and does not corrupt
kernel data, but returns a packet that is one byte short, or a malicious driver that
explicitly corrupts the system page table. We do not attempt to detect or correct
such failures.

Among failures that can crash the system, a spectrum of possible defensive ap-
proaches exist. These range from the Windows approach (i.e., to preemptively crash
to avoid data corruption) to the full virtual machine approach (i.e., to virtualize the
entire architecture and provide total isolation). Our approach lies in the middle.
Like all possible approaches, it reflects tradeoffs among performance, compatibility,
complexity, and completeness. Section 3.6 describes our current limitations. Some
limitations are architectural, while others are induced by the current hardware or
software implementation. Despite these limitations, given tens of thousands of ex-
isting drivers, and the millions of failures they cause, a fault-resistant solution like
the one we propose has practical implications and value.

2.1 Goals

Given the preceding principles, the Nooks architecture seeks to achieve three major
goals:

(1) Isolation. The architecture must isolate the kernel from extension failures.
Consequently, it must detect failures in the extension before they infect other
parts of the kernel.

(2) Recovery. The architecture must support automatic recovery to permit appli-
cations that depend on a failing extension to continue.

(3) Backward Compatibility. The architecture must apply to existing systems and
existing extensions, with minimal changes to either.

Achieving all three goals in an existing operating system is challenging. In partic-
ular, the need for backward compatibility rules out certain otherwise appealing tech-
nologies, such as type safety and capability-based hardware. Furthermore, back-
ward compatibility implies that the performance of a system using Nooks should
not be significantly worse than a system without it.

2.2 Functions

We achieve the preceding goals by creating a new operating system reliability layer
that is inserted between the extensions and the OS kernel. The reliability layer
intercepts all interactions between the extensions and the kernel to facilitate isola-
tion and recovery. A crucial property of this layer is transparency, i.e., to meet our
backward compatibility goals, it must be largely invisible to existing components.
ACM Journal Name, Vol. V, No. N, Month 20YY.

Improving the Reliability of Commodity Operating Systems · 5

OS Kernel

Kernel Extensions
Is

ol
at

io
n

In
te

rp
os

itio
n

O
bj

ec
t

Tr
ac

kin
g

Re
co

ve
ry Nooks

Isolation
Manager

Fig. 1. The Nooks Isolation Manager, a transparent OS layer inserted between the kernel and

kernel extensions.

Figure 1 shows this new layer, which we call the Nooks Isolation Manager (NIM).
Above the NIM is the operating system kernel. The NIM function lines jutting up
into the kernel represent kernel-dependent modifications, if any, the OS kernel pro-
grammer makes to insert Nooks into a particular OS. These modifications need
only be made once. Underneath the NIM is the set of isolated extensions. The
function lines jutting down below the NIM represent the changes, if any, the exten-
sion writer makes to interface a specific extension or extension class to Nooks. In
general, no modifications should be required at this level, since transparency for
existing extensions is our major objective.

The NIM provides four major architectural functions, as shown in Figure 1:
Isolation, Interposition, Object Tracking, and Recovery. We describe each function
below.

2.2.1 Isolation. The Nooks isolation mechanisms prevent extension errors from
damaging the kernel (or other isolated extensions). Every extension in Nooks ex-
ecutes within its own lightweight kernel protection domain. This domain is an
execution context with the same processor privilege as the kernel but with write
access to a limited portion of the kernel’s address space.

The major task of the isolation mechanism, then, is protection-domain manage-
ment. This involves the creation, manipulation, and maintenance of lightweight
protection domains. The secondary task is inter-domain control transfer. Isolation
services support the control flow in both directions between extension domains and
the kernel domain.

Unlike system calls, which are always initiated by an application, the kernel fre-
quently calls into extensions. These calls may generate callbacks into the kernel,
which may then generate a call into the extension, and so on. This complex com-
munication style is handled by a new kernel service, called the Extension Procedure
Call (XPC) – a control transfer mechanism specifically tailored to isolating exten-
sions within the kernel. This mechanism resembles Lightweight Remote Procedure
Call (LRPC) [Bershad et al. 1990] and Protected Procedure Call (PPC) in capabil-
ity systems [Dennis and Horn 1966]. However, LRPC and PPC handle control and
data transfer between mutually distrustful peers. XPC occurs between trusted do-

ACM Journal Name, Vol. V, No. N, Month 20YY.

6 · Michael M. Swift et al.

mains but is asymmetric (i.e., the kernel has more rights to the extension’s domain
than vice versa).

2.2.2 Interposition. The Nooks interposition mechanisms transparently integrate
existing extensions into the Nooks environment. Interposition code ensures that:
(1) all extension-to-kernel and kernel-to-extension control flow occurs through the
XPC mechanism, and (2) all data transfer between the kernel and extension is
viewed and managed by Nooks’ object-tracking code (described below).

The interface between the extension, the NIM, and the kernel is provided by a set
of wrapper stubs that are part of the interposition mechanism. Wrappers resemble
the stubs in an RPC system [Birrell and Nelson 1984] that provide transparent
control and data transfer across address space (and machine) boundaries. Nooks’
stubs provide transparent control and data transfer between the kernel domain and
extension domains. Thus, from the extension’s viewpoint, the stubs appear to be
the kernel’s extension API. From the kernel’s point of view, the stubs appear to be
the extension’s function entry points.

2.2.3 Object Tracking. The NIM’s object-tracking functions oversee all kernel re-
sources used by extensions. In particular, object-tracking code: (1) maintains a
list of kernel data structures that are manipulated by an extension, (2) controls all
modifications to those structures, and (3) provides object information for cleanup
when an extension fails. An extension’s protection domain cannot modify kernel
data structures directly. Therefore, object-tracking code must copy kernel objects
into an extension domain so they can be modified and copy them back after changes
have been applied. When possible, object-tracking code verifies the type and ac-
cessibility of each parameter that passes between the extension and kernel. Kernel
routines can then avoid scrutinizing parameters, executing checks only when called
from unreliable extensions.

2.2.4 Recovery. Nooks’ recovery functions detect and recover from a variety of
extension faults. Nooks detects a software fault when an extension invokes a kernel
service improperly (e.g., with invalid arguments) or when an extension consumes
too many resources. In this case, recovery policy determines whether Nooks triggers
recovery or returns an error code to the extension, which can already handle the
failure of a kernel function. Triggering recovery prevents further corruption, but
may degrade performance by recovering more frequently. Nooks detects a hardware
fault when the processor raises an exception during extension execution, e.g., when
an extension attempts to read unmapped memory or to write memory outside of
its protection domain. Unmodified extensions are of course not in a position to
handle their own hardware faults, so in such cases Nooks always triggers a higher
level recovery.

Faulty behavior may also be detected from outside Nooks by a user or a program.
The user or program can then trigger Nooks recovery explicitly.

Extensions executing in a Nooks domain only access domain-local memory di-
rectly. All extension access to kernel resources is managed and tracked through
wrappers. Therefore, Nooks can successfully release extension-held kernel struc-
tures, such as memory objects or locks, during the recovery process.
ACM Journal Name, Vol. V, No. N, Month 20YY.

Improving the Reliability of Commodity Operating Systems · 7

Interposition

Interposition

Application Daemon

Device Device Device

Driver Driver

Driver

Driver

Linux Kernel

Nooks Isolation Manager

Application
Applications

Daemon
Daemons

Interposition

Kernel
Service

Kernel
Service

Driver

Nooks Recovery
Agent

Kernel
Service

Kernel
Service

Fig. 2. The Nooks layer (shaded) inside the Linux OS, showing wrapped Linux extensions exe-

cuting in isolated protection domains. It is not necessary to wrap all extensions, as indicated by
the unshaded extensions on the right.

3. IMPLEMENTATION

We implemented Nooks inside the Linux 2.4.18 kernel on the Intel x86 architecture.
We chose Linux as our platform because of its popularity and its wide support for
kernel extensions in the form of loadable modules. Although we developed Nooks
on Linux, we expect that the architecture and design could be ported to other
operating systems, such as Windows XP or Solaris. The Linux kernel provides over
700 functions callable by extensions and more than 650 extension-entry functions
callable by the kernel. Moreover, few data types are abstracted, and extensions
directly access fields in many kernel data structures. Despite these challenges, one
developer brought the system from concept to function in about 18 months.

The Linux kernel supports standard interfaces for many extension classes. For
example, there is a generic interface for block and character devices, and another
one for file systems. The interfaces are implemented as C language structures
containing a set of function pointers.

Most interactions between the kernel and extensions take place through function
calls, either from the kernel into extensions or from extensions into exported ker-
nel routines. Some global data structures, such as the current task structure, are
directly accessed by extensions. Fortunately, extensions modify few of these struc-
tures, and frequently do so through preprocessor macros and inline functions. As a
result, Nooks can interpose on most extension/kernel interactions by intercepting
the function calls between the extensions and kernel.

Figure 2 shows the Nooks layer inside of Linux. Under the Nooks Isolation
ACM Journal Name, Vol. V, No. N, Month 20YY.

8 · Michael M. Swift et al.

Table I. The number of non-comment lines of source

code in Nooks.

Source Components # Lines

Memory Management 1,882

Object Tracking 1,454

Extension Procedure Call 770

Wrappers 14,396

Recovery 1,136

Linux Kernel Changes 924

Miscellaneous 2,074

Total number of lines of code 22,266

Manager are isolated kernel extensions: a single device driver, three stacked drivers,
and a kernel service. These extensions are wrapped by Nooks wrapper stubs, as
indicated by the shaded boxes surrounding them. Each wrapped box, containing
one or more extensions, represents a single Nooks protection domain. Figure 2 also
shows unwrapped kernel extensions that continue to interface directly to the Linux
kernel.

The NIM exists as a Linux layer that implements the functions described in the
previous section. To facilitate portability, we do not use the Intel x86 protection
rings or memory segmentation mechanisms. Instead, extensions execute at the same
(ring 0) privilege level as the rest of the kernel. Memory protection is provided
through the conventional page table architecture and can be implemented both
with hardware- and software-filled TLBs.

Table I shows the size of the Nooks implementation. Nooks is composed of about
22,000 lines of code. In contrast, the kernel itself has 2.4 million lines, and the Linux
2.4 distribution has about 30 million [Wheeler 2002]. Other commodity systems are
of similar size. For example, various reports relate that the Microsoft Server 2003
operating system contains over 50 million lines of code [Thurrott 2003]. Clearly,
relative to a base kernel and its extensions, Nooks’ reliability layer introduces only
a modest amount of additional system complexity.

In the following subsections we discuss implementation of Nooks’ major compo-
nents: isolation, interposition, wrappers, object tracking, and recovery. We describe
wrappers separately because they make up the bulk of Nooks’ code and complexity.
Finally, we describe limitations of the Nooks implementation.

3.1 Isolation

The isolation components of Nooks consist of two parts: (1) memory management,
to implement lightweight protection domains with virtual memory protection, and
(2) Extension Procedure Call (XPC), to transfer control safely between extensions
and the kernel.

Figure 3 shows the Linux kernel with two lightweight kernel protection domains,
each containing a single extension. All components exist in the kernel’s address
space. However, memory access rights differ for each component: e.g., the kernel
has read-write access to the entire address space, while each extension is restricted
to read-only kernel access and read-write access to its local domain. This is sim-
ilar to the management of address space in some single-address-space operating
systems [Chase et al. 1994]).
ACM Journal Name, Vol. V, No. N, Month 20YY.

Improving the Reliability of Commodity Operating Systems · 9

Linux Kernel

Extension 1
Heap

I/O
Buffers

Stacks

Object
Table

Ext. 1: R
Ext. 2: R

Kernel: R/W

Ext. 1: R/W
Ext. 2: R

Kernel: R/W

Ext. 1: R
Ext. 2: R/W

Kernel: R/W

Extension 2
Heap

I/O
Buffers

Stacks

Object
Table

Fig. 3. Protection of the kernel address space.

To provide extensions with read access to the kernel, Nooks’ memory management
code maintains a synchronized copy of the kernel page table for each domain. Each
lightweight protection domain has private structures, including a domain-local heap,
a pool of stacks for use by the extension, memory-mapped physical I/O regions,
and kernel memory buffers, such as socket buffers or I/O blocks that are currently
in use by the extension.

We noted previously that Nooks protects against bugs but not against malicious
code. Lightweight protection domains reflect this design. For example, Nooks pre-
vents an extension from writing kernel memory, but it does not prevent a malicious
extension from explicitly replacing the domain-local page table by reloading the
hardware page table base register.

Changing protection domains requires a change of page tables. The Intel x86
architecture flushes the TLB on such a change, hence, there is a substantial cost
to entering a lightweight protection domain on the x86, both from the flush and
from subsequent TLB misses. This cost could be mitigated in an architecture with
a tagged TLB, such as the MIPS or Alpha, or with single-address-space protection
support [Koldinger et al. 1994], such as the IA-64 or PA-RISC. However, because
Nooks’ lightweight protection domains are kernel tasks that share kernel address
space, they minimize the costs of scheduling and data copying on a domain change
when compared to normal cross-address space or kernel-user RPCs.

Nooks currently does not protect the kernel from DMA by a device into the kernel
address space. Preventing a rogue DMA requires hardware that is not generally
present on x86 computers. However, Nooks tracks the set of pages writable by
a driver and could use this information to restrict DMA on a machine with the
appropriate hardware support.

Nooks uses the XPC mechanism to transfer control between extension and kernel
domains. XPC is transparent to both the kernel and its extensions, which continue
to interact through their original procedural interfaces. Transparency is provided
by means of the wrapper mechanism, described in Section 3.3.

Control transfer in XPC is managed by two functions internal to Nooks:
(1) nooks driver call transfers from the kernel into an extension, and (2)

ACM Journal Name, Vol. V, No. N, Month 20YY.

10 · Michael M. Swift et al.

nooks kernel call transfers from extensions into the kernel. These functions take
a function pointer, an argument list, and a protection domain. They execute the
function with its arguments in the specified domain. The transfer routines save
the caller’s context on the stack, find a stack for the calling domain (which may be
newly allocated or reused when calls are nested), change page tables to the target
domain, and then call the function. The reverse operations are performed when
the call returns.

The performance cost of an XPC is relatively high because it requires changing
page tables and potentially flushing the TLB. To ameliorate this cost, XPC also
supports deferred calls, which batches many calls into a single domain-crossing.
Wrappers queue deferred function calls for later execution, either at the entry or
exit of a future XPC. For example, we changed the packet-delivery routine used by
the network driver to batch the transfer of message packets from the driver to the
kernel. When a packet arrives, the extension calls a wrapper to pass the packet
to the kernel. The wrapper queues the packet and batches it with the next few
packets that arrive. Function calls such as this can be deferred because there are
no visible side effects to the call. Two queues exist for each domain: an extension-
domain queue holds delayed kernel calls, and a kernel-domain queue holds delayed
extension calls.

In addition to deferring calls for performance reasons, Nooks also uses deferred
XPC to synchronize extension modifications to objects explicitly passed from the
kernel to extensions. In Linux, the kernel often returns a kernel structure pointer
to an extension for structure modification, with no explicit synchronization of the
update. The kernel assumes that the modification is atomic and that the extension
will update it “in time.” In such cases, the wrapper queues a deferred function call
to copy the modified object back to the kernel at the extension’s next XPC return
to the kernel.

We made several one-time changes to the Linux kernel to support isolation. First,
to maintain coherency between the kernel and extension page tables, we inserted
code wherever the Linux kernel modifies the kernel page table. Second, we mod-
ified the kernel exception handlers to detect exceptions that occur within Nooks’
protection domains. This new code swaps in the kernel’s stack pointer and page
directory pointer for the task. On return from exception, the code restores the stack
pointer and page table for the extension. Finally, because Linux co-locates the task
structure on the kernel stack (which changes as a result of isolation), we had to
change its mechanism for locating the current task structure. We currently use a
global variable to hold the task pointer, which is sufficient for uniprocessor systems.
On a multiprocessor, we would use an otherwise unused x86 segment register, as is
done in Windows.

3.2 Interposition

Interposition allows Nooks to intercept and control communication between exten-
sions and the kernel. Nooks interposes on extension/kernel control transfers with
wrapper stubs. Wrappers provide transparency by preserving existing kernel/driver
procedure-call interfaces while enabling the protection of all control and data trans-
fers in both directions. Control interposition required two changes to Linux kernel
code. First, we modified the standard module loader to bind extensions to wrappers
ACM Journal Name, Vol. V, No. N, Month 20YY.

Improving the Reliability of Commodity Operating Systems · 11

Kernel Extension

XPC

Extension

XPC

Kernel

Wrapper

Wrapper

Copy/Sync.

Check
Check

Copy/Sync.

Fig. 4. Control flow of extension and kernel wrappers.

instead of kernel functions when the extensions are loaded. Second, we modified
the kernel’s module initialization code to explicitly interpose on the initialization
call into an extension, enabling the extension to execute within its lightweight
protection domain. Following initialization, all function pointers passed from the
extension to the kernel are replaced by wrapper pointers. This causes the kernel to
call wrappers rather than extension procedures directly.

In addition to interposing on control transfers, Nooks must interpose on some
data references. The Linux kernel exports many objects that are only read by ex-
tensions (e.g., the current time). These objects are linked directly into the extension
so they can be freely read. Other kernel objects are directly written by extensions.
We changed macros and inline functions that directly modify kernel objects into
wrapped function calls. For object modifications that are not performance critical,
Nooks converts the access into an XPC into the kernel. For performance-critical
data structures, we create a shadow copy of the kernel object within the extension’s
domain. The contents of the kernel object and the shadow object are synchronized
before and after XPCs into the extension. This technique is used, for example,
for the softnet data structure, which contains a queue of the packets sent and
received by a network device.

3.3 Wrappers

As noted above, Nooks inserts wrapper stubs between kernel and extension func-
tions. There are two types of wrappers: kernel wrappers are called by extensions
to execute kernel-supplied functions; extension wrappers are called by the kernel
to execute extension-supplied functions. In either case, a wrapper functions as an
XPC stub that appears to the caller as if it were the target procedure in the called
domain.

Both wrapper types perform the body of their work within the kernel’s protection
domain. Therefore, the domain change occurs at a different point depending on
the direction of transfer, as shown in Figure 4. When an extension calls a kernel
wrapper, the wrapper performs an XPC on entry so that the body of the wrapper

ACM Journal Name, Vol. V, No. N, Month 20YY.

12 · Michael M. Swift et al.

(i.e., object checking, copying, etc.) can execute in the kernel’s domain. Once the
wrapper’s work is done, it calls the target kernel function directly with a (local)
procedure call. In the opposite direction, when the kernel calls an extension wrap-
per, the wrapper executes within the kernel’s domain. When it is done, the wrapper
performs an XPC to transfer to the target function within the extension.

Wrappers perform three basic tasks. First, they check parameters for validity by
verifying with the object tracker and memory manager that pointers are valid. Sec-
ond, object-tracker code within wrappers implements call-by-value-result semantics
for XPC, by creating a copy of kernel objects on the local heap or stack within the
extension’s protection domain. No marshalling or unmarshalling is necessary, be-
cause the extension and kernel share the kernel address space. For simple objects,
the synchronization code is placed directly in the wrappers. For more complex
objects, such as file system inodes or directory entries that have many pointers to
other structures, we wrote explicit synchronization routines to copy objects between
the kernel and an extension. Third, wrappers perform an XPC into the kernel or
extension to execute the desired function, as shown in Figure 4.

Wrappers are relatively straightforward to write and integrate into the kernel.
We developed a tool that automatically generates wrapper entry code and the
skeleton of wrapper bodies from Linux kernel header files. To create the wrappers
for exported kernel functions, the tool takes a list of kernel function names and
generates wrappers that implement function interposition through XPC. Similarly,
for the kernel-to-extension interface, the tool takes a list of interfaces (C structures
containing function pointers) and generates wrappers for the kernel to call.

We wrote the main wrapper body functions by hand. This is a one-time task re-
quired to support the kernel-extension interface for a specific OS. This code verifies
that parameters are correct and moves parameters between protection domains.
Once written, wrappers are automatically usable by all extensions that use the
kernel’s interface. Writing a wrapper requires knowing how parameters are used:
whether parameters are alive across calls or are passed to other threads, and which
parameters or fields of parameters can be modified. We performed this task by
hand, but metacompilation [Engler et al. 2000] could be used to determine the
characteristics of extensions by analyzing the set of existing drivers.

3.3.1 Wrapper Code Sharing. Section 4 describes the eight extensions we isolated
for our Nooks experiments: two sound-card drivers (sb and es1371), four Ethernet
drivers (pcnet32, e1000, 3c59x, and 3c90x), a file system (VFAT), and an in-kernel
Web server (kHTTPd).

Previously, Table I showed that the Nooks implementation includes 14K lines of
wrapper code, over half of the Nooks code base. We implemented 248 wrappers in
all, which we use to isolate 463 imported and exported functions. Wrapper code is
thus often shared among multiple drivers in a class or across classes.

Figure 5 shows the total number of wrappers (both kernel and extension wrap-
pers) used by each of these extensions. Each bar gives a breakdown of the number
of wrappers unique to that extension and the number of wrappers shared in various
ways. Sharing reduces the cost of adding fault resistance to a given extension. For
example, of the 44 wrappers used by the pcnet32 Ethernet driver (31 kernel wrap-
pers and 13 extension wrappers), 27 are shared among the four network drivers.
ACM Journal Name, Vol. V, No. N, Month 20YY.

Improving the Reliability of Commodity Operating Systems · 13

Wrappers Used By Extensions

0

10

20

30

40

50

60

70

80

90

100

sb

es
13

71

e1
00

0

pc
ne

t32
3c

59
x

3c
90

x
vfa

t

kh
ttp

d

Extension

N
u

m
b

er
 o

f
W

ra
p

p
er

s
U

se
d

Unique to this
extension
Shared with at least
one other extension
Common to this
driver class
Common to all
drivers
Common to all
extensions

Fig. 5. Code sharing among wrappers for different extensions.

Similarly, 39 wrappers are shared between the two sound-card drivers. Overall, of
the 159 wrappers that are not shared, 114 are in the one-of-a-kind extensions VFAT
and kHTTPd.

3.4 Object Tracking

The object tracker facilitiates the recovery of kernel objects following an extension
failure. The Nooks object tracker performs two independent taskks. First, it records
the addresses of all objects in use by an extension. Objects used only for the
duration of a single XPC call are recorded in a table attached to the current task
structure. Objects with long lifetimes are recorded in a per-protection-domain hash
table. Second, for objects that may be written by an extension, the object tracker
records an association between the kernel and extension versions of the object.
This association is used by wrappers to pass parameters between the extension’s
protection domain and the kernel’s protection domain.

The object tracker must know the lifetimes of objects to perform garbage col-
lection, when necessary, or to prevent extensions from using dangling references.
Currently, this code can be written only by examining the kernel-extension interface.
There are several common paradigms. For example, some objects are accessible to
the extension only during the lifetime of a single XPC call from the kernel. In this
case, we add the object to the tracker’s database when the call begins and remove it
on return. Other objects are explicitly allocated and deallocated by the extension,
in which case we know their lifetimes exactly. In still other cases, we go by the
semantics of the object and its use. For example, extensions allocate the timer

ACM Journal Name, Vol. V, No. N, Month 20YY.

14 · Michael M. Swift et al.

data structure to suspend a task. We add this object to the object tracker when
an extension calls add timer and remove it when the timer fires, at which point we
know that it is no longer used. In some cases, it may be necessary to modify the
kernel to notify Nooks when an object is deleted.

Complex objects may be handled in different ways. In some cases, Nooks copies
objects into the extension’s protection domain, following embedded pointers as ap-
propriate. In other cases, Nooks avoids copying, for example, by mapping network
packets and disk blocks into and out of an extension. A “page tracker” mechanism
within the object tracker remembers the state of these mapped pages and grants
and revokes extension access to the pages.

Our Nooks implementation currently supports many kernel object types, such as
tasklets, PCI devices, inodes, and memory pages. To determine the set of objects to
track, we inspected the interfaces between the kernel and our supported extensions
and noted every object that passed through those interfaces. We then wrote object-
tracking procedures for each of the 43 object types that we saw. For each object
type, there is a unique type identifier and code to release instances of that type
during recovery.

3.5 Recovery

Recovery in Nooks consists of two parts. After a fault occurs, the recovery man-
ager releases resources in use by the extension. The user-mode agent coordinates
recovery and determines what course of action to take.

Nooks triggers recovery when it detects a failure through software checks (e.g.,
parameter validation or livelock detection), processor exceptions, or explicit exter-
nal signals. After a failure, Nooks suspends the running extension and notifies the
recovery manager.

The Nooks recovery manager is tasked with returning the system, including the
extension, to a clean state from which it can continue. The recovery manager
executes in phases to ensure that resources are not used after they are released.
The first phase of recovery is specific to device drivers: Nooks disables interrupt
processing for the device controlled by the extension, preventing livelock that could
occur if device interrupts are not properly dismissed. It then starts a user-mode
recovery agent, which controls the subsequent recovery.

The user-mode recovery agent relies on a configuration database to define the re-
covery policy for specific extensions or classes of extensions. The agent can perform
extension-specific recovery actions as well as notify system managers of the fault.
It can also change configuration parameters, replace the extension, or even disable
recovery if the extension fails too frequently. The agent requires that many kernel
components, such as a file system and disk driver, function properly.

In designing the recovery mechanism, we assume that drivers fail due to tran-
sient faults, or “heisenbugs” [Gray 1996], that do not always reproduce. This is
evidenced by the fact that drivers typically function correctly after rebooting. We
take advantage of the non-reproducing nature of driver faults to simplify our recov-
ery process. Rather than trying to roll back the driver to a previous safe state, we
instead completely restart the driver.

By default, the recovery agent initiates full recovery of faulting extensions by
unloading the extension, releasing all of its kernel and physical resources, and then
ACM Journal Name, Vol. V, No. N, Month 20YY.

Improving the Reliability of Commodity Operating Systems · 15

reloading and restarting the extension. The agent first calls the recovery manager
to release any resources that may be safely reused by the kernel.

The recovery manager signals tasks that are currently executing within the ex-
tension, or have called through the extension, to unwind. For a task in a non-
interruptible state in either the kernel or another extension, complete recovery may
be impossible if the sleeping task never wakes. In this case, partial recovery may
still be possible, even though not all processes will continue to execute. Uninter-
ruptible sleeps are infrequent in the Linux kernel, however, so we do not believe
this to be a significant limitation. Nooks then releases any kernel resources the
extension is using that will not be accessed by an external device. For example, a
network device may continue to write to packet buffers in memory; therefore, those
buffers cannot be released until the device has been reinitialized.

The recovery manager walks the list of objects known to the object tracker and
releases, frees, or unregisters all objects that will not be accessed by external de-
vices. Nooks associates each object type in the tracker with a recovery function.
The function releases the object to the kernel and removes all references from the
kernel into the extension. If new kernel-extension interfaces are added to Nooks,
kernel developers need only add functions to recover new object types used by those
interfaces.

Nooks ensures the correctness of kernel data structures after recovery both
through the object tracker and through XPC. The use of call-by-value-result en-
sures that the kernel data structures are updated atomically. The object tracker
records all references between extension and kernel data structures and can there-
fore remove all references to the extension.

After releasing kernel resources, the agent unloads the extension. It then consults
policy and may choose to automatically reload the extension in a new lightweight
protection domain. The agent then initializes the extension, using the startup
scripts that accompany the extension. For device drivers, only after the driver
has been reloaded does Nooks finally release all physical resources that could be
accessed by the device, such as interrupt request levels (IRQs) and physical memory
regions.

3.6 Implementation Limitations

Section 2 described the Nooks philosophy of designing for mistakes and for fault
resistance. The Nooks implementation involves many trade-offs. As such, it does
not provide complete isolation or fault tolerance for all possible extension errors.
Nooks runs extensions in kernel mode to simplify backward compatibility, so we
cannot prevent extensions from deliberately executing privileged instructions that
corrupt system state. We do not prevent infinite loops inside of the extension, but
we do detect livelock between the extension and kernel with timeouts. Finally, we
check parameters passed to the operating system, but we cannot do a complete job
given Linux semantics (or lack thereof).

Our current implementation of recovery is limited to extensions that can be
killed and restarted safely. This is true for device drivers, which are dynamically
loaded when hardware devices are attached to a system. It may not be true for all
extensions.

These limitations are not insignificant, and crashes may still occur. However, we
ACM Journal Name, Vol. V, No. N, Month 20YY.

16 · Michael M. Swift et al.

believe that our implementation will allow a kernel to resist many crashes caused by
extensions. Given the enormous number of such crashes, a fault-resistant solution
can have a large impact on overall reliability.

3.7 Achieving Transparency

As previously mentioned, the Nooks code isolates an extension from the rest of
the kernel, and tracks all resources it uses. Isolation allows Nooks to catch errant
behavior. Resource tracking allows Nooks to clean up extension state following that
behavior. Both isolation and resource tracking rely on being able to interpose on
all communication between the kernel and extensions. For the most part, all such
communication in Linux takes place by means of a procedure call (or an inlined
macro, which we replace at compile time with a procedure call).

Our implementation is therefore oriented towards these “interface abiding” types
of extensions, allowing us to incorporate them into the Nooks infrastructure in a
completely transparent way – that is, neither the kernel nor the extension requires
any modification. Unfortunately, there are a few extensions which store directly
into kernel data structures, making it impossible to transparently interpose. For
these types of extensions, it is necessary to manually modify the code so as to
replace stores with procedure calls. In all, of the eight extensions we isolated for
our extensions, seven required no code modifications, while one (kHTTPd) required
that we modify 13 lines of code which directly wrote to kernel data structures.

4. EVALUATING RELIABILITY

The thesis of our work is that Nooks can significantly improve system reliability by
isolating the kernel from extension failures. This section uses automated experi-
ments to demonstrate that Nooks can detect and automatically recover from faults
in extensions. In these tests, Nooks recovered from 99% of extension faults that
would otherwise crash Linux.

4.1 Test Methodology

We tested Nooks on a variety of existing kernel extensions and artifically introduced
bugs to induce faults.

4.1.1 Fault Injection. Our experiments use synthetic fault injection to insert faults
into Linux kernel extensions. We adapted a fault injector developed for the Rio
File Cache [Ng and Chen 1999] and ported it to Linux. The injector automatically
changes single instructions in the extension code to emulate a variety of common
programming errors, such as uninitialized local variables, bad parameters, and in-
verted test conditions.

We inject two different types of faults into the system. First, we inject faults that
emulate specific programming errors common to kernel code according to earlier
studies [Sullivan and Chillarege 1991; Christmansson and Chillarege 1996]. Source
and destination faults emulate assignment errors by changing the operand or desti-
nation of an instruction. Pointer faults emulate incorrect pointer calculations and
cause memory corruption. Interface faults emulate bad parameters. We emulate
bugs in control flow through branch faults, which remove a branch instruction, and
by loop faults, which change the termination condition for a loop.
ACM Journal Name, Vol. V, No. N, Month 20YY.

Improving the Reliability of Commodity Operating Systems · 17

Table II. The types of faults injected into extensions and the code transformations used to

emulate these faults.

Fault Type Code Transformation

Source fault Change the source register

Destination fault Change the destination register

Pointer fault Change the address calculation for a memory instruction

Interface fault Use existing value in register instead of passed parameter

Branch fault Delete a branch instruction

Loop fault Invert the termination condition of a loop instruction

Text tault Flip a bit in an instruction

NOP fault Elide an instruction

Second, we expand the range of testing by injecting random changes that do not
model specific programming errors. In this category are text faults, in which we
flip a random bit in a random instruction, and NOP faults, in which we delete a
random instruction.

Table II shows the types of faults we inject, and how the injector simulates
programming errors (see [Ng and Chen 1999] for a more complete description of
the fault injector). In our tests, we inject an equal number of each fault type.

4.1.2 Types of Extensions Isolated. In the experiments reported below, we used
Nooks to isolate three types of extensions: device drivers, a kernel subsystem
(VFAT), and an application-specific kernel extension (kHTTPd). The device drivers
we chose were common network and sound card drivers, representative of the largest
class of Linux drivers (Linux has more than 48 sound card drivers and 190 network
drivers). A device driver’s interaction with the kernel is well matched to the Nooks
isolation model for many reasons. First, drivers invoke the kernel and are invoked
by the kernel through narrow, well-defined interfaces; therefore, it is straightfor-
ward to design and implement their wrappers. Second, drivers frequently deal with
blocks of opaque data, such as network packets or disk blocks, that do not re-
quire validation. Third, drivers often batch their processing to amortize interrupt
overheads. When run with Nooks, batching also reduces isolation overhead.

In addition to device drivers, we isolated a loadable kernel subsystem. The
subsystem we chose was the optional VFAT file system, which is compatible with
the Windows 95 FAT32 file system [Microsoft Corporation 2000]. While drivers
tend to have a small number of interfaces with relatively few functions, the VFAT
interface is larger and more complex than the device drivers’. VFAT has six distinct
interfaces that together export over 35 calls; by comparison, the sound and network
devices each have one interface with 8 and 13 functions, respectively. In addition,
driver interfaces tend to pass relatively simple data structures, such as network
packets and device objects, while the file system interfaces pass complex, heavily-
linked data structures such as inodes.

Lastly, we isolated an application-specific kernel extension – the kHTTPd Web
server [van de Ven 1999]. kHTTPd resides in the kernel so that it can access
kernel network and file system data structures directly, avoiding otherwise expensive
system calls. Our experience with kHTTPd demonstrates that Nooks can isolate
even ad-hoc and unanticipated kernel extensions.

Overall, we have isolated eight extensions under Nooks, as shown in Table III.
ACM Journal Name, Vol. V, No. N, Month 20YY.

18 · Michael M. Swift et al.

Table III. The extensions isolated and the function that each per-

forms. Measurements are reported for extensions shown in bold.

Extension Purpose

sb SoundBlaster 16 driver

es1371 Ensoniq sound driver

e1000 Intel Pro/1000 Gigabit Ethernet driver

pcnet32 AMD PCnet32 10/100 Ethernet driver

3c59x 3COM 3c59x series 10/100 Ethernet driver

3c90x 3COM 3c90x series 10/100 Ethernet driver

VFAT Win95 compatible file system

kHTTPd In-kernel Web server

We present reliability and performance results for five of the extensions representing
the three extension types: sb, e1000, pcnet32, VFAT and kHTTPd. Results for the
remaining three drivers are consistent with those presented.

4.1.3 Test Environment. Our application-level workload consists of four programs
that stress the sound card driver, the network driver, VFAT, and kHTTPd. The
first program plays a short MP3 file. The second performs a series of ICMP-ping
and TCP streaming tests, while the third untars and compiles a number of files.
The fourth program runs a Web load generator against our kernel-level Web server.

We ran our reliability experiments in the context of the VMware Virtual Ma-
chine [Sugerman et al. 2001]. The virtual machine allows us to perform thousands
of tests remotely while quickly and easily returning the system to a clean state
following each one. We spot-checked a number of the VMware trials against a base
hardware configuration (i.e., no virtual machine) and discovered no anomalies. In
addition, the e1000 tests were run directly on raw hardware, because VMware does
not support the Intel Pro/1000 Gigabit Ethernet card.

To measure reliability, we conducted a series of trials in which we injected faults
into extensions running under two different Linux configurations. In the first, called
“native,” the Nooks isolation services were present but unused. In the second, called
“Nooks,” the isolation services were enabled for the extension under test. For each
extension, we ran 400 trials (50 of each fault type) on the native configuration.
In each trial, we injected five random errors into the extension and exercised the
system, observing the results. We then ran those same 400 trials, each with the
same five errors, against Nooks. It is important to note that our native and Nooks
configurations are identical binaries, allowing our automatic fault injector to intro-
duce identical errors. Hence, we used the same kernel and module binaries for both
tests. We next describe the results of our experiments.

4.2 Test Results

As described above, we ran 400 fault-injection trials for each of the five measured
extensions for native and Nooks configurations. Not all fault-injection trials cause
faulty behavior, e.g., bugs inserted on a rarely (or never) executed path will rarely
(or never) produce an error. However, many trials do cause failures. We now
examine different types of failures that occurred.

4.2.1 System Crashes. A system crash is the most extreme and easiest problem
to detect, as the operating system either panics, becomes unresponsive, or simply
ACM Journal Name, Vol. V, No. N, Month 20YY.

Improving the Reliability of Commodity Operating Systems · 19

reboots. In an ideal world, every system crash caused by a fault-injection trial
under native Linux would result in a recovery under Nooks. In practice, however, as
previously discussed, Nooks may not detect or recover from certain failures caused
by very bad programmers or very bad luck.

Figure 6 shows the number of system crashes caused by our fault-injection ex-
periments for each of the extensions running on native Linux and Nooks. Of the
365 crashes observed with native Linux, Nooks eliminated 360, or 99%. In the
remaining five crashes the system deadlocked, which Nooks does not handle.

Figure 6 also illustrates a substantial difference in the number of system crashes
that occur for VFAT and sb extensions under Linux, compared to e1000, pcnet32
and kHTTPd. This difference reflects the way in which Linux responds to kernel
failures. The e1000 and pcnet32 extensions are interrupt oriented, i.e., kernel-mode
extension code is run as the result of an interrupt. VFAT and sb extensions are
process oriented, i.e., kernel-mode extension code is run as the result of a system call
from a user process. kHTTPd is process oriented but manipulates (and therefore
can corrupt) interrupt-level data structures. Linux treats exceptions in interrupt-
oriented code as fatal and crashes the system, hence the large number of crashes
in e1000, pcnet32, and kHTTPd. Linux treats exceptions in process-oriented code
as non-fatal, continuing to run the kernel but terminating the offending process
even though the exception occurred in the kernel. This behavior is unique to
Linux. Other operating systems, such as Microsoft Windows XP, deal with kernel
processor exceptions more aggressively by always halting the operating system. In
such systems, VFAT and sb would cause system crashes.

4.2.2 Non-Fatal Extension Failures. While Nooks is designed to protect the OS
from misbehaving extensions, it is not designed to detect erroneous extension behav-
ior. For example, the network could disappear because the device driver corrupts
the device registers, or a mounted file system might simply become non-responsive
due to a bug. Neither of these failures is fatal to the system in its own right, and
Nooks generally does not detect such problems (nor is it intended to). However,
when Nooks’ simple failure detectors do detect such problems, its recovery services
can safely restart the faulty extensions.

Our fault-injection trials cause a number of non-fatal extension failures, allowing
us to examine Nooks’ effectiveness in dealing with these cases, as well. Figure 7
shows the extent to which Nooks reduces non-fatal extension failures that occurred
in native Linux. In reality, these results are simply a reflection of the Linux handling
of process- and interrupt-oriented extension code, as previously described. That
is, Nooks can trap exceptions in process-oriented extensions and can recover the
extensions to bring them to a clean state in many cases.

For the two interrupt-oriented Ethernet drivers (e1000 and pcnet32), Nooks al-
ready eliminated all system crashes resulting from extension exceptions. The re-
maining non-crash failures are those that leave the device in a non-functional state,
e.g., unable to send or receive packets. Nooks cannot remove these failures for e1000
and pcnet32, since it cannot detect them. The few extension failures it eliminated
occurred when the device was being manipulated by process-oriented code.

For VFAT and the sb sound card driver, Nooks reduced the number of non-fatal
extension failures. These failures were caused by kernel exceptions in process-

ACM Journal Name, Vol. V, No. N, Month 20YY.

20 · Michael M. Swift et al.

System Crashes

0

40

80

120

160

200

sb e1000 pcnet32 VFAT kHTTPd

Extension under test

N
u

m
b

er
 o

f
cr

as
h

es

Native Nooks

10
1

52

0

119

0
9

2

175

2

Fig. 6. The reduction in system crashes in 2000 fault-injection trials (400 for each extension)

observed using Nooks. In total, there were 365 system crashes in the native configuration and

only five system crashes with Nooks.

oriented code, which caused Linux to terminate the calling process and leave the
extension in an ill-defined state. Nooks detected the processor exceptions and per-
formed an extension recovery, thereby allowing the application to continue. The re-
maining non-fatal extension failures, which occurred under native Linux and Nooks,
were serious enough to leave the extension in a non-functioning state but not serious
enough to generate a processor exception that could be trapped by Nooks.

The kHTTPd extension is similar to the interrupt-oriented drivers because it
causes corruption that leads to interrupt-level faults. However, a small number of
injected faults caused exceptions within the kHTTPd process-oriented code. These
were caught by Nooks and an extension failure was avoided.

In general, the remaining non-fatal extension failures under Nooks were the result
of deadlock or data structure corruption within the extension itself. Fortunately,
such failures were localized to the extension and could usually be recovered from
once discovered. It is straightforward to develop a “nanny” service that probes
for disabled extensions and invokes Nooks’ recovery procedures, as appropriate.
Alternatively, the failure could be detected by the user, who can then invoke Nooks
to initiate a manual recovery.

4.2.3 Recovery Errors. The Nooks recovery procedure is straightforward – a fault-
ing extension is unloaded, reloaded, and restarted. For network, sb, and kHTTPd
extensions, this process improves reliability directly. For VFAT, however, which
deals with persistent state stored on disk, there is some chance that the extension
ACM Journal Name, Vol. V, No. N, Month 20YY.

Improving the Reliability of Commodity Operating Systems · 21

Non-fatal Extension Failures

0

50

100

150

200

250

sb e1000 pcnet32 VFAT kHTTPd

Extension under test

N
u

m
b

er
 o

f
fa

ilu
re

s

Native Nooks

156

56

17 16

33 31

232

80

33 27

Fig. 7. The reduction in non-fatal extension failures observed using Nooks. In total, there were

471 such failures in the native configuration and 210 with Nooks.

damaged critical on-disk structures before Nooks detected an error condition.
In practice, we found that in 90% of the cases, VFAT recovery resulted in on-disk

corruption (i.e., lost or corrupt files or directories). Since fault injection occurs after
many files and directories have been created, the abrupt shutdown and restart of the
file system leaves them in a corrupted state. As an experiment, we caused Nooks
to synchronize the disks with the in-memory disk cache before releasing resources
on a VFAT recovery. This reduced the number of corruption cases from 90% to
10%. While we would not expect Nooks to do this automatically, it suggests that
there may be extensions to Nooks that could improve recovery through the use of
application-specific recovery services.

4.2.4 Manually Injected Errors. In addition to the automatic fault-injection ex-
periments, we inserted about 10 bugs by hand. Taking the most common fixes
for faults reported on the Linux Kernel Mailing List and in the paper by Chou et
al. [Chou et al. 2001], we “broke” extensions by removing checks for NULL point-
ers, failing to properly initialize stack and heap variables, dereferencing a user-level
pointer, and freeing a resource multiple times. Nooks automatically detected and
recovered from all such failures.

4.2.5 Latent Bugs. Nooks revealed several latent bugs in existing kernel exten-
sions. For example, it discovered a bug in the 3COM 3c90x Ethernet driver that
occurs during its initialization. If the driver fails to detect the card in the system,
it immediately frees a large buffer. Later, when the driver is unloaded, it zeroes

ACM Journal Name, Vol. V, No. N, Month 20YY.

22 · Michael M. Swift et al.

Table IV. The relative performance of Nooks compared to native Linux for six benchmark tests.

CPU utilization is accurate to only a few percent. Relative performance is determined either
by comparing latency (Play-mp3, Compile-local) or throughput (Send-stream, Receive-stream,

Serve-simple-web-page, Serve-complex-web-page). The data reflects the average of three trials

with a standard deviation of less than 2%.

Benchmark Extension XPC Nooks Native Nooks
Rate Relative CPU CPU

(per sec) Perf. (%) Util. (%) Util. (%)

Play-mp3 sb 150 100 4.8 4.6

Receive-stream e1000 (receiver) 10,961 97 39.7 57.8

Send-stream e1000 (sender) 58,373 97 38.8 81.8

Compile-local VFAT 26,979 89 88.7 88.1

Serve-simple- kHTTPd 61,183 44 96.6 96.8
web-page (server)

Serve-complex- e1000 1,960 97 90.5 92.6
web-page (server)

this buffer. Nooks caught this bug because it write protected the memory when
it was freed. Nooks also discovered a bug in another extension, kHTTPd [van de
Ven 1999], where an already freed object was referenced. In general, we found
that Nooks could be a useful kernel development tool that provides a “fast restart”
whenever an extension under development fails.

4.3 Summary of Synthetic Reliability Experiments

Nooks eliminated 99% of the system crashes that occurred with native Linux. The
remaining failures directly reflect our best-efforts principle and are the cost, in
terms of reliability, of an approach that imposes reliability on legacy extension
and operating systems code. In addition to crashes, Nooks can recover from many
non-fatal extension failures. While Nooks cannot detect many kinds of erroneous
behavior, it can trap extension exceptions and initiate recovery in many cases.
Overall, Nooks eliminated 55% of non-fatal extension failures caused by our fault
injection trials. Finally, Nooks detected and recovered from all of the commonly
occurring faults that we injected by hand.

5. PERFORMANCE

This section presents benchmark results that evaluate the performance cost of the
Nooks isolation services. Our experiments use existing benchmarks and tools to
compare the performance of a system using Nooks to one that does not. Our test
machine is a Dell 1.7 GHz Pentium 4 PC running Linux 2.4.18. The machine in-
cludes 890 MB of RAM, a SoundBlaster 16 sound card, an Intel Pro/1000 Gigabit
Ethernet adapter, and a single 7200 RPM, 41 GB IDE hard disk drive. Our network
tests used two similarly equipped machines (we do not report performance infor-
mation for the slower network adapters to avoid unfairly biasing the results in favor
of Nooks). Unlike the reliability tests described previously, all performance tests
were run on a bare machine, i.e., one without the VMware virtualization system.

Table IV summarizes the benchmarks used to evaluate system performance. For
each benchmark, we used Nooks to isolate a single extension, indicated in the second
column of the table. We ran each benchmark on native Linux without Nooks and
ACM Journal Name, Vol. V, No. N, Month 20YY.

Improving the Reliability of Commodity Operating Systems · 23

then again on a version of Linux with Nooks enabled. The table shows the relative
change in performance for Nooks, either in wall clock time or throughput, depending
on the benchmark. We also show CPU utilization measured during benchmark
execution, as well as the rate of XPCs per second incurred during each test. The
table shows that Nooks achieves between 44% and 100% of the performance of
native Linux for these tests.

As the isolation services are primarily imposed at the point of the XPC, the
rate of XPCs offers a telling performance indicator. Thus, the benchmarks fall
into three broad categories characterized by the rate of XPCs: low frequency (a
few hundred XPCs per second), moderate frequency (a few thousand XPCs per
second), and high frequency (tens of thousands of XPCs per second). We now look
at each benchmark in turn.

5.1 Sound Benchmark

The Play-mp3 benchmark plays an MP3 file at 128 kilobits per second through
the system’s sound card, generating only 150 XPCs per second. At this low rate,
the additional XPC overhead of Nooks is imperceptible, both in terms of execu-
tion time and CPU overhead. For the many low-bandwidth devices in a system,
such as keyboards, mice, Bluetooth devices [Haarsten 2000], modems, and sound
cards, Nooks offers a clear benefit by improving driver reliability with almost no
performance cost.

5.2 Network Benchmarks

The Receive-stream benchmark is an example of a moderate XPC-frequency test.
Receive-stream was measured with the netperf [Jones 1995] performance tool, where
the receiving node used an isolated Ethernet driver to receive a stream of 32KB
TCP messages using a 256KB buffer. The Ethernet driver for the Intel Pro/1000
card batches incoming packets to reduce interrupt and, hence, XPC frequency.
Nevertheless, the receiver performs XPCs in the interrupt-handling code, which is
on the critical path for packet delivery. This results in a throughput reduction of
about 3% and an overall CPU utilization increase of 18 percentage points.

In contrast, Send-stream (also measured using netperf) is a high XPC-frequency
test that isolates the sending node’s Ethernet driver. Unlike the Receive-stream
test, which benefits from the batching of received packets, the OS does not batch
outgoing packets that it sends. Therefore, although the total amount of data trans-
mitted is the same, Send-stream executes nearly an order of magnitude more XPCs
per second than Receive-stream. The overall CPU utilization on the sender thus
increases from about 39% on native Linux to 81% with Nooks. As with the Receive-
stream benchmark, throughput drops by about 3%. Despite the higher XPC rate,
much of the XPC processing on the sender is overlapped with the actual sending of
packets, mitigating some of the Nooks overhead. Nevertheless, on slower processors
or faster networks, it may be worthwhile to batch outgoing streaming packets as is
done, for example, with network terminal protocols [Gettys et al. 1900].

5.3 Compile Benchmark

Our isolated file system offers the opportunity to explore more deeply some of
the performance implications of the Nooks architecture and its implementation.

ACM Journal Name, Vol. V, No. N, Month 20YY.

24 · Michael M. Swift et al.

Table IV shows that the time to untar and compile the Linux kernel on a local
VFAT file system is about 10% greater under Nooks than under native Linux. As
the CPU was equally utilized during execution in both cases, we conclude that the
slowdown has two possible causes. There is more code to run with Nooks than
without, and code common to both implementations runs more slowly with Nooks.

To understand these causes better, we profiled and measured the compile-local
benchmark running on both native Linux and Linux with Nooks. The results are
shown in Figure 8. Time spent running application code is not shown, as it was
identical for both configurations (about 477 seconds). In contrast, the figure shows
that the time spent executing kernel code was significantly different for the two
configurations: 39 seconds for native, and 111 seconds for Nooks.

The upper bars in the figure show that more code (about 46 seconds worth)
executes with Nooks than without. XPC functionality accounts for more than
half of the additional overhead. After XPC, the graph shows that object tracking
incurs a significant cost (about 6 seconds). The remaining components (wrappers,
page table synchronization, and data copying) incur only a minor overhead. At a
high level, the figure illustrates the cost of isolation and recovery in a protected
system. The isolation costs manifest themselves in terms of XPC overhead, page
table synchronization, and data copying. The recovery costs are reflected in terms
of the object tracking that occurs every time a pointer is passed in an XPC. Recall
that object tracking allows Nooks to correctly recover kernel resources in the event
of an extension failure. These measurements demonstrate that enabling recovery
can have a substantial cost. Conversely, they demonstrate that fast inter-process
communication (IPC) is only part of the performance equation in an environment
where recovery is as important as isolation [Bershad 1992].

In addition to showing that there is more code to run under Nooks, the lower bars
in Figure 8 show that code common to both systems runs more slowly with Nooks.
For native Linux, about 4.4 seconds were spent in VFAT code, and another 35
seconds were spent in the ”rest of the kernel.” In contrast, Nooks spent 12 seconds
in VFAT, and 40 seconds in the rest of the kernel. Because the code in VFAT and
the rest of the kernel is almost identical, the difference is likely due to the increased
memory pressure caused by Nooks. For example, the domain change that occurs as
part of an XPC requires a complete flush of the processor’s TLB on the Pentium.

The Pentium 4 performance counters allowed us to measure the number of ker-
nel data TLB and kernel data cache misses per instruction for this workload. With
Nooks, the kernel TLB misses per instruction increased almost three-fold. In con-
trast, the data cache misses per instruction changed relatively little. Consequently,
it is the TLB, not the cache, that make kernel code run more slowly under Nooks.
To confirm this, we built a special version of Nooks that does not require a TLB
flush on each XPC as extensions and the kernel run in a single domain. This ver-
sion allows us to directly observe the impact of the TLB, but of course provides
no protection and is therefore useful only for evaluating performance. Eliminating
the flush (not surprisingly) decreased the time spent in the Nooks code from 46
seconds to 23 seconds. Furthermore, the XPC time dropped from 28 seconds to
7 seconds. The number of data TLB misses per instruction was only 16% greater
than native Linux. This suggests that optimizations to reduce the number of TLB
ACM Journal Name, Vol. V, No. N, Month 20YY.

Improving the Reliability of Commodity Operating Systems · 25

Time spent in kernel mode for compile-local
benchmark

0

30

60

90

120

Native Linux Nooks

Configuration under test

K
e
r
n

e
l
ti

m
e
 (

s
e
c
o

n
d

s
)

Misc.

Wrappers

Object Tracking

Data copying

PT Sync.

XPC

VFAT

Other KernelKernel

VFAT

Nooks

Fig. 8. Comparative times spent in kernel mode for the Compile-local (VFAT) benchmark. During
the run with Nooks, the system performed 10,934,567 XPCs into the kernel and 4,0086,586 XPCs

into the extension. Time in user mode (not shown) was identical for both configurations (477

seconds).

misses, such as superpages, may be important in future versions of the system.
Furthermore, processor support for tagging TLB entries would remove the need to
flush, eliminating many of these misses.

5.4 Web Server Benchmarks

The final two benchmarks illustrate the impact on server performance of trans-
actional workloads. Serve-simple-web-page uses a high XPC-frequency extension
(kHTTPd) on the server to deliver static content cached in memory. We used
httperf [Mosberger and Jin 1998] to generate a workload that repeatedly requested
a single kilobyte-sized Web page. kHTTPd on native Linux can serve over 15,000
pages per second. With Nooks, it can serve about 6,000, representing a 60% de-
crease in throughput.

Two elements of the benchmark’s behavior conspire to produce such poor perfor-
mance. First, the kHTTPd server processor is the system bottleneck. For example,
when run natively, the server’s CPU utilization is nearly 96%. Consequently, the
high XPC rate slows the server substantially. Second, since the workload is transac-
tional and non-buffered, the client’s request rate drops as a function of the server’s
slowdown. By comparison, the Send-stream benchmark, which exhibits roughly
the same rate of XPCs but without saturating the CPU, degrades by only 10%. In
addition, Send-stream is not transactional, so network buffering helps to mask the
server-side slowdown.

Nevertheless, it is clear that kHTTPd represents a poor application of Nooks:
it is already a bottleneck and performs many XPCs. This service was cast as an

ACM Journal Name, Vol. V, No. N, Month 20YY.

26 · Michael M. Swift et al.

extension so that it could access kernel resources directly, rather than indirectly
through the standard system call interface. Since Nooks’ isolation facilities impose
a penalty on those accesses, performance suffers. We believe that other types of
extensions, such as virus and intrusion detectors, which are placed in the kernel
to access or protect resources otherwise unavailable from user level, would make
better candidates as they do not represent system bottlenecks.

In contrast to kHTTPd, the second Web server test (Serve-complex-web-page)
reflects moderate XPC frequency. Here, we ran the SPECweb99 workload [Standard
Performance Evaluation Corporation 1999] against the user-mode Apache 2.0 Web
Server [Apache Project 2000], with and without Nooks isolation of the Ethernet
driver. This workload includes a mix of static and dynamic Web pages. The test
configuration is throughput limited due to its single IDE disk drive. When running
without Nooks, the Web server handled a peak of 114 requests per second. With
Nooks installed and the Ethernet driver isolated on the server, peak throughput
dropped by about 3%, to 110 requests per second.

5.5 Summary

This section used a small set of benchmarks to quantify the performance cost
of Nooks. For the sound and Ethernet drivers tested, Nooks imposed a perfor-
mance penalty of less than 10%. For kHTTPd, an ad-hoc application extension,
the penalty was nearly 60%. A key factor in the performance impact is the number
of XPCs required, as XPCs impose a burden, particularly on the x86 TLB in our
current implementation. The performance costs of Nooks’ isolation services depend
as well on the CPU utilization imposed by the workload. If the CPU is saturated,
the additional cost can be significant.

Overall, Nooks provides a substantial reliability improvement at a cost that de-
pends on the extension being isolated. The reliability/performance trade-off is thus
one that can be made on a case-by-case basis. For many computing environments,
given the performance of modern systems, we believe that the benefits of Nooks’
isolation and recovery services are well worth the costs.

6. RELATED WORK

Our work differs from the substantial body of research on extensibility and relia-
bility in many dimensions. Nooks relies on a conventional processor architecture,
a conventional programming language, a conventional operating system architec-
ture, and existing extensions. It is designed to be transparent to the extensions
themselves, to support recoverability, and to impose only a modest performance
penalty.

Hardware support for modularity

The major hardware approaches to improve reliability include capability-based ar-
chitectures [Houdek et al. 1981; Organick 1983; Levy 1984] and ring and segment
architectures [Intel Corporation 2002; Saltzer 1974].[Witchel et al. 2002] presents
a similar approach in a newer context. These systems support fine-grained pro-
tection, enabling construction and isolation of privileged subsystems. The OS is
extended by adding new privileged subsystems that exist in new domains or seg-
ments. Recovery is not specifically addressed in either architecture. In particular,
ACM Journal Name, Vol. V, No. N, Month 20YY.

Improving the Reliability of Commodity Operating Systems · 27

capabilities support the fine-grained sharing of data. If one sharing component
fails, recovery may be difficult for others sharing the same resource. Segmented
architectures have been difficult to program and plagued by poor performance. In
contrast, Nooks isolates existing code on commodity processors using standard vir-
tual memory and runtime techniques, and it supports recovery through garbage
collection of extension-allocated data.

Operating system support for isolation and recovery

Several projects have isolated kernel components through new operating system
structures. Microkernels [Wulf 1975; Liedtke 1995; Young et al. 1986] and their
derivatives [Engler et al. 1995; Ford et al. 1997; Hand 1999] promise another path
to reliability. These systems isolate extensions into separate address spaces that
interact with the OS through a kernel communication service, such as messages
or remote procedure call [Bershad et al. 1990]. Therefore, the failure of an ex-
tension within an address space does not necessarily crash the system. However,
as in capability-based systems, recovery has received little attention in microkernel
systems. In Mach, for example, a user-level system service can fail without crashing
the kernel, but rebooting is often the only way to restart the service. Despite much
research in fast inter-process communication (IPC) [Bershad et al. 1990; Liedtke
1995], the reliance on separate address spaces raises performance concerns that have
prevented adoption in commodity systems. Microkernel/monolithic hybrids, such
as L4Linux [Härtig et al. 1997], provide much of the isolation support needed for
reliability, but are more difficult to integrate into existing code bases.

In the past, virtual memory techniques have been used to isolate specific compo-
nents or data from corruption, e.g., in a database [Sullivan and Stonebraker 1991]
or in the file system cache [Ng and Chen 1999]. Nooks uses similar techniques to
protect the operating system from erroneous extension behavior.

Virtual machine technologies [Chapin et al. 1995; Chen and Noble 2001; Sug-
erman et al. 2001; Whitaker et al. 2002] have been proposed as a solution to the
reliability problem. They can reduce the amount of code that can crash the whole
machine. Virtualization techniques typically run several entire operating systems
on top of a virtual machine, so faulty extensions in one operating system cause only
a few applications to fail. However, if the extension executes in the virtual machine
monitor, such as device drivers for physical devices, a fault causes all virtual ma-
chines and their applications to fail. While applications can be partitioned among
virtual machines to limit the scope of failure, doing so removes the benefits of shar-
ing within an operating system, such as fast IPC and intelligent scheduling. The
challenge for reliable extensibility is not in virtualizing the underlying hardware;
rather it lies in virtualizing only the interface between the kernel and extension. In
fact, this is a major feature of the Nooks architecture.

A number of transaction-based systems [Schmuck and Wylie 1991; Seltzer et al.
1996] have applied recoverable database techniques within the OS to improve reli-
ability. In some cases, such as the file system, the approach worked well, while in
others it proved awkward and slow [Schmuck and Wylie 1991]. Like the language-
based approaches, these strategies have limited applicability. In contrast, Nooks
integrates transparently into existing hardware and operating systems.

ACM Journal Name, Vol. V, No. N, Month 20YY.

28 · Michael M. Swift et al.

Compiler and language support for reliability

An alternative to operating system-based isolation is the use of type-safe program-
ming languages and run-time systems [Bershad et al. 1995] that prevent many faults
from occurring. Such systems can provide performance advantages, since compile-
time checking enables lightweight run-time structures (e.g., local procedure calls
rather than cross-domain calls). To date, however, OS suppliers have been unwill-
ing to implement system code in type-safe, high-level languages. Moreover, the
type-safe language approach makes it impossible to leverage the enormous existing
code base. In contrast, Nooks requires no specialized programming language.

Recent years have seen the development of software techniques that enforce code
correctness properties, e.g., software fault isolation [Wahbe et al. 1993] and self-
verifying assembly code [Necula and Lee 1996]. These technologies are attractive
and might replace or augment some of Nooks’ isolation techniques. Nevertheless,
in their proposed form, they deal only with the isolation problem, leaving unsolved
the problems of transparent integration and recovery. Recently, techniques for veri-
fying the integrity of extensions in existing operating systems have proven effective
at revealing programming errors [Engler et al. 2000; DeLine and Fähndrich 2001;
Ball and Rajamani 2001; Condit et al. 2003]. This static approach obviously com-
plements our own dynamic one.

The Devil project [Mérillon et al. 2000] takes a different approach, ensuring that
drivers interact with devices correctly. In Devil, a device vendor would specify
the device-software interface in a domain-specific language. The Devil compiler
then uses that specification to generate an API (i.e., C-language stubs) for the
device. Driver writers call these functions to access the device. Devil removes
many of the bugs associated with drivers by abstracting away the complexities
of communicating through I/O ports and memory-mapped device registers. This
approach is complementary to Nooks, in that it removes many of the bugs in drivers,
but requires writing new drivers to use the generated interface.

Recovery

More recently, researchers have begun to focus on recovery as a general technique
for dealing with failure in complex systems [Patterson et al. 2002]. For example,
Candea, in [Candea and Fox 2001], proposes a model of recursive recovery; in the
model a complex software system is decomposed into a multi-level implementation
where each layer can fail and recover independently. Nooks is complementary,
although our focus to date has been limited to restarting portions of operating
system kernels.

Other systems have focused on recovery from faults in existing code, such as
discount checking [Lowell and Chen 1998; Lowell et al. 2000]. Discount checking
recovers from faults in user-level programs automatically by snapshotting state
periodically, and reverting back to a previous snapshot following a failure. Nooks,
in contrast, complete restarts failed kernel extensions. Wrappers have been used
for reliability and recovery in other systems. [Fabre et al. 2000] and the Healers
project [Fetzer and Xiao 2003] use wrappers similar to Nooks’ around existing code
to both tolerate and recover from faults automatically. These wrappers can verify
pre- and post-conditions, catch exceptions, and retry function calls after a failure.
ACM Journal Name, Vol. V, No. N, Month 20YY.

Improving the Reliability of Commodity Operating Systems · 29

Table V. Components that require architectural changes for var-

ious approaches to reliability. A “yes” in a cell indicates that the
reliability mechanism on that row requires architectural change to

the component listed at the top of the column.

Required Modifications

Approach Hardware OS Extension

Capabilities yes yes yes

Microkernels no yes yes

Languages no yes yes

New Driver no yes yes

Architectures

Transactions no no yes

Virtual Machines no no no

Static Analysis no no no

Nooks no no no

Unlike Nooks, these systems do not incorporate memory isolation and hence do not
prevent accidental memory corruption.

Table V shows the changes to hardware architecture, operating system archi-
tecture, or extension architecture required by previous approaches to reliability.
Only Nooks, virtual machines, and static analysis techniques need no architectural
changes.

In summary, Nooks brings to commodity operating systems the well-known re-
quirements for fault toleratant operating systems [Denning 1976]: isolation, re-
source control, decision verification (checking), and error recovery. Nooks provides
these features for extensions in a way that is compatible and transparent to most
existing code.

7. CONCLUSIONS

Kernel extensions are a major source of failure in modern operating systems. Nooks
is a new reliability layer intended to significantly reduce extension-related failures.
Nooks uses hardware and software techniques to isolate kernel extensions, trapping
many common faults and permitting extension recovery. The Nooks system focuses
on achieving backward compatibility, that is, it sacrifices complete isolation and fault
tolerance for compatibility and transparency with existing kernels and extensions.
Nevertheless, Nooks demonstrates that it is possible to realize an extremely high
level of operating system reliability with a performance loss ranging from zero to
just over 60%. Our fault-injection experiments reveal that Nooks recovered from
99% of the faults that caused native Linux to crash.

Our experience shows that: (1) implementation of a Nooks layer is achievable
with only modest engineering effort, even on a monolithic operating system like
Linux, (2) extensions such as device drivers can be isolated with little or no change
to extension code, and (3) isolation and recovery can dramatically improve the
system’s ability to survive extension faults.

Overall, our experiments demonstrate that Nooks defines a new point in the
reliability/performance space beyond simple kernel mode and user mode. In today’s
world, nearly all extensions run in the kernel and are potential threats to reliability.
Nooks offers kernel developers a substantial degree of reliability with a cost ranging

ACM Journal Name, Vol. V, No. N, Month 20YY.

30 · Michael M. Swift et al.

from negligible to significant. The decision to isolate a kernel extension should be
made in light of that extension’s native reliance on kernel services, its bottleneck
potential, and the environment in which it will be used.

Clearly, for many device drivers and low XPC-frequency extensions, the decision
is easy. For others, it is a question of requirements. Where performance matters
more than reliability, isolation may not be appropriate. However, given the impres-
sive performance of current processors and the enormous rate at which performance
is increasing, many devices are in the “easy decision” category today, and more will
join that category with each passing year.

ACKNOWLEDGMENTS

This work was supported in part by the National Science Foundation under grants
ITR-0085670, CCR-0121341 and ITR-0326546. We appreciate the efforts of Steve
Martin and Doug Buxton for their help in developing the wrapper-generating tool
and testing Nooks, Leo Shum for adding sound card support, and Christophe Augier
for his work on the recovery agent and on reliability testing. We would like to thank
Intel and Microsoft for information on their respective products. We would also like
to thank Frans Kaashoek and the many anonymous referees for their suggestions
which have improved the content and presentation of the paper.

REFERENCES

Apache Project. 2000. Apache HTTP server version 2.0. Available at http://httpd.apache.

org.

Ball, T. and Rajamani, S. K. 2001. Automatically validating temporal safety properties of

interfaces. In SPIN 2001, Workshop on Model Checking of Software. LNCS, vol. 2057. 103–
122.

Bershad, B. N. 1992. The increasing irrelevance of IPC performance for microkernel-based
operating systems. In Workshop on Micro-Kernels and Other Kernel Architectures. Seattle,

WA, 205–211.

Bershad, B. N., Anderson, T. E., Lazowska, E. D., and Levy, H. M. 1990. Lightweight

remote procedure call. ACM Transactions on Computer Systems 8, 1 (Feb.), 37–55.

Bershad, B. N., Savage, S., Pardyak, P., Sirer, E. G., Fiuczynski, M. E., Becker, D., Cham-

bers, C., and Eggers, S. 1995. Extensibility, safety and performance in the SPIN operating

system. In Proceedings of the 15th ACM Symposium on Operating Systems Principles. Copper
Mountain, Colorado, 267–284.

Birrell, A. D. and Nelson, B. J. 1984. Implementing remote procedure calls. ACM Transac-
tions on Computer Systems 2, 1 (Feb.), 39–59.

Bovet, D. P. and Cesati, M. 2001. Understanding the Linux Kernel. O’Reilly.

Candea, G. and Fox, A. 2001. Recursive restartability: Turning the reboot sledgehammer into
a scalpel. In Proceedings of the Eighth IEEE HOTOS. 125–132.

Chapin, J., Rosenblum, M., Devine, S., Lahiri, T., Teodosiu, D., and Gupta, A. 1995. Hive:

Fault containment for shared-memory multiprocessors. In Proceedings of the 15th ACM Sym-
posium on Operating Systems Principles. Copper Mountain Resort, Colorado, 12–25.

Chase, J. S., Levy, H. M., Feeley, M. J., and Lazowska, E. D. 1994. Sharing and protection
in a single-address-space operating system. ACM Transactions on Computer Systems 12, 4

(Nov.), 271–307.

Chen, P. and Noble, B. 2001. When virtual is better than real. In Proceedings of the Eighth
IEEE HOTOS. 133–138.

Chou, A., Yang, J., Chelf, B., Hallem, S., and Engler, D. 2001. An empirical study of

ACM Journal Name, Vol. V, No. N, Month 20YY.

Improving the Reliability of Commodity Operating Systems · 31

operating system errors. In Proceedings of the 18th ACM Symposium on Operating Systems

Principles. Lake Louise, Alberta, 73–88.

Christmansson, J. and Chillarege, R. 1996. Generation of an error set that emulates software
faults - based on field data. In Proceedings of the 1996 Symposium on Fault-Tolerant Computing

(FTCS). IEEE, Sendai, Japan, 304 – 313.

Condit, J., Harren, M., McPeak, S., Necula, G. C., and Weimer, W. 2003. CCured in
the real world. In Proceedings of the ACM SIGPLAN ’03 ACM Conference on Programming

Language Design and Implementation. San Diego, California, USA, 232–244.

Custer, H. 1993. Inside Windows NT. Microsoft Press, Redmond, WA.

DeLine, R. and Fähndrich, M. 2001. Enforcing high-level protocols in low-level software. In
Proceedings of the ACM SIGPLAN ’01 ACM Conference on Programming Language Design

and Implementation. Snowbird, Utah, 59–69.

Denning, P. J. 1976. Fault tolerant operating systems. ACM Computing Surveys 8, 4 (Dec.),

359–389.

Dennis, J. B. and Horn, E. V. 1966. Programming semantics for multiprogramming systems.

Communications of the ACM 9, 3 (Mar.).

Engler, D., Chelf, B., Chou, A., and Hallem, S. 2000. Checking system rules using system-

specific, programmer-written compiler extensions. In Proceedings of the 4th USENIX Sympo-
sium on Operating Systems Design and Implementation. San Diego, CA, 1–16.

Engler, D. R., Kaashoek, M. F., and Jr., J. O. 1995. Exokernel: an operating system architec-

ture for application-level resource management. In Proceedings of the 15th ACM Symposium
on Operating Systems Principles. Copper Mountain Resort, Colorado, 251–266.

Fabre, J.-C., Rodŕı, M., Arlat, J., Salles, F., and Sizun, J.-M. 2000. Building dependable

COTS microkernel-based systems using MAFALDA. In Proceedings of the 2000 Pacific Rim

International Symposium on Dependable Computing (PRDC 00). Los Angeles, California, 85–
94.

Fabry, R. S. 1974. Capability-based addressing. Communications of the ACM 17, 7 (July),

403–412.

Fetzer, C. and Xiao, Z. 2003. HEALERS: A toolkit for enhancing the robustness and security
of existing applications. In Proceedings of the 2003 International Conference on Dependable

Systems and Networks (DSN’03). San Francisco, California, 317–322.

Ford, B., Back, G., Benson, G., Lepreau, J., Lin, A., and Shivers, O. 1997. The Flux OSKit:
a substrate for OS language and research. In Proceedings of the 16th ACM Symposium on

Operating Systems Principles. 38–51.

Forin, A., Golub, D., and Bershad, B. 1991. An I/O system for Mach. In Proc. Usenix Mach

Symposium. 163–176.

Gettys, J., Carlton, P. L., and McGregor, S. 1900. The X window system version 11. Tech.

Rep. CRL-90-08, Digital Equipment Corporation. Dec.

Gillen, A., Kusnetzky, D., and McLaron, S. 2002. The role of Linux in reducing the cost of

enterprise computing. IDC white paper.

Gosling, J., Joy, B., and Steele, G. 1996. The Java Language Specification. Addison-Wesley.

Gray, J. 1996. Why do computers stop and what can be done about it? In Proceedings of

the Fifth Symposium on Reliability in Distributed Software and Database Systems. IEEE, Los

Angeles, California, 3–12.

Haarsten, J. C. 2000. The Bluetooth radio system. IEEE Personal Communications Maga-

zine 7, 1 (Feb.), 28–36.

Hand, S. M. 1999. Self-paging in the Nemesis operating system. In Proceedings of the 3rd

USENIX Symposium on Operating Systems Design and Implementation. New Orleans, LA,
73–86.

Härtig, H., Hohmuth, M., Liedtke, J., Schöberg, S., and Wolter, J. 1997. The performance

of µ-kernel-based systems. In Proceedings of the 16th ACM Symposium on Operating Systems
Principles. Saint-Malo, France, 66–77.

Hewlett Packard. 2001. Hewlett Packard Digital Entertainment Center. http://www.hp.com/

hpinfo/newsroom/press/31oct01a.htm.

ACM Journal Name, Vol. V, No. N, Month 20YY.

32 · Michael M. Swift et al.

Houdek, M. E., Soltis, F. G., and Hoffman, R. L. 1981. IBM System/38 support for capability-

based addressing. In Proceedings of the 8th ACM International Symposium on Computer
Architecture. ACM/IEEE, 341–348.

Hsueh, M., Tsai, T. K., and Iyer, R. K. 1997. Fault injection techniques and tools. IEEE

Computer 30, 4 (Apr.), 75–82.

Intel Corporation. 2002. The IA-32 Architecture Software Developer’s Manual, Volume 1:

Basic Architecture. Intel Corporation. Available at http://www.intel.com/design/pentium4/
manuals/24547010.pdf.

Jones, R. 1995. Netperf: A network performance benchmark, version 2.1. Available at http:

//www.netperf.org.

Koldinger, E. J., Chase, J. S., and Eggers, S. J. 1994. Architectural support for single address

space operating systems. In Proceedings of the Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems. 175–186.

Levy, H. M. 1984. Capability-Based Computer Systems. Digital Press. Available at http:

//www.cs.washington.edu/homes/levy/capabook.

Liedtke, J. 1995. On µ-kernel construction. In Proceedings of the 15th ACM Symposium on

Operating Systems Principles. Copper Mountain Resort, Colorado, 237–250.

Lowell, D. E., Chandra, S., and Chen, P. M. 2000. Exploring failure transparency and the

limits of generic recovery. In Proceedings of the 4th USENIX Symposium on Operating Systems

Design and Implementation. San Diego, CA.

Lowell, D. E. and Chen, P. M. 1998. Discount checking: Transparent, low-overhead recovery

for general applications. Technical Report CSE-TR-410-99, University of Michigan. Nov.

Mérillon, F., Réveillère, L., Consel, C., Marlet, R., and Muller, G. 2000. Devil: An
IDL for hardware programming. In Proceedings of the 4th USENIX Symposium on Operating

Systems Design and Implementation. San Diego, CA, 17–30.

Microsoft Corporation. 2000. FAT: General overview of on-disk format, version 1.03.

Mosberger, D. and Jin, T. 1998. httperf: A tool for measuring web server performance. In First

Workshop on Internet Server Performance. ACM, Madison, WI, 59—67.

Necula, G. C. and Lee, P. 1996. Safe kernel extensions without run-time checking. In Pro-

ceedings of the 2nd USENIX Symposium on Operating Systems Design and Implementation.
Seattle, Washington, 229–243.

Ng, W. T. and Chen, P. M. 1999. The systematic improvement of fault tolerance in the Rio file

cache. In Proceedings of the 1999 Symp. on Fault-Tolerant Computing (FTCS). IEEE, 76–83.

Organick, E. I. 1983. A Programmer’s View of the Intel 432 System. McGraw Hill.

Patterson, D., Brown, A., Broadwell, P., Candea, G., Chen, M., Cutler, J., Enriquez,
P., Fox, A., Kýcýman, E., Merzbacher, M., Oppenheimer, D., Sastry, N., Tetzlaff, W.,

Traupman, J., and Treuhaft, N. 2002. Recovery-Oriented Computing (ROC): Motivation,
definition, techniques, and case studies. Technical Report CSD-02-1175, UC Berkeley Computer
Science. Mar.

Project-UDI. 1999. Introduction to UDI version 1.0. Tech. rep., Project UDI. Aug.

Saltzer, J. H. 1974. Protection and the control of information sharing in Multics. Communica-

tions of the ACM 17, 7 (July), 388–402.

Schmuck, F. and Wylie, J. 1991. Experience with transactions in QuickSilver. In Proceedings of
the 13th ACM Symposium on Operating Systems Principles. Pacific Grove, California, 239–253.

Seltzer, M. I., Endo, Y., Small, C., and Smith, K. A. 1996. Dealing with disaster: Surviving

misbehaved kernel extensions. In Proceedings of the 2nd USENIX Symposium on Operating
Systems Design and Implementation. Seattle, Washington, 213–227.

Short, R. 2003. Vice President of Windows Core Technology, Microsoft Corp. Private commu-
nication.

Standard Performance Evaluation Corporation. 1999. The SPECweb99 benchmark.

Sugerman, J., Venkitachalam, G., and Lim, B. 2001. Virtualizing I/O devices on VMware
workstation’s hosted virtual machine monitor. In Proceedings of the 2001 USENIX Annual

Technical Conference. Boston, MA.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Improving the Reliability of Commodity Operating Systems · 33

Sullivan, M. and Chillarege, R. 1991. Software defects and their impact on system availability

– a study of field failures in operating systems. In Proceedings of the 1991 Symposium on Fault-
Tolerant Computing (FTCS-21). IEEE, Montreal, Que., Canada, 2–9.

Sullivan, M. and Stonebraker, M. 1991. Using write protected data structures to improve

software fault tolerance in highly available database management systems. In Proceedings of
the 17th International Conference on Very Large Data Bases. Morgan Kaufman Publishing,

171–180.

Thurrott, P. 2003. Windows 2000 server: The road to gold, part two: Developing windows.

Paul Thurrott’s SuperSite for Windows.

TiVo Corporation. 2001. TiVo digital video recorder. www.tivo.com.

van de Ven, A. 1999. kHTTPd: Linux HTTP accelerator. Available at http://www.fenrus.

demon.nl/.

Wahbe, R., Lucco, S., Anderson, T. E., and Graham, S. L. 1993. Efficient software-based

fault isolation. In Proceedings of the 14th ACM Symposium on Operating Systems Principles.
Asheville, North Carolina, 203–216.

Wheeler, D. A. 2002. More than a gigabuck: Estimating GNU/Linux’s size. Available at

http://www.dwheeler.com/sloc/redhat71-v1/redhat71sloc.html.

Whitaker, A., Shaw, M., and Gribble, S. D. 2002. Denali: Lightweight virtual machines for
distributed and networked applications. In Proceedings of the 5th USENIX Symposium on

Operating Systems Design and Implementation. Boston, MA, 195–209.

Witchel, E., Cates, J., and Asanović, K. 2002. Mondrian memory protection. In Proceedings

of the Tenth International Conference on Architectural Support for Programming Languages
and Operating Systems. 304–316.

Wulf, W. A. 1975. Reliatble hardware-software architecture. In Proceedings of the International

Conference on Reliable Software. Los Angeles, California, 122–130.

Young, M., Accetta, M., Baron, R., Bolosky, W., Golub, D., Rashid, R., and Tevanian,
A. 1986. Mach: A new kernel foundation for UNIX development. In Proceedings of the 1986

Summer USENIX Conference. Atlanta, Georgia, 93–113.

Received Month Year; revised Month Year; accepted Month Year

ACM Journal Name, Vol. V, No. N, Month 20YY.

