
Exterminate All Operating System Abstractions

Dawson R� Engler M� Frans Kaashoek

fengler� kaashoekg�lcs�mit�edu

MIT Laboratory for Computer Science

��� Technology Square

Cambridge� MA ��	
�

Abstract

The de�ning tragedy of the operating systems
community has been the de�nition of an operating sys�
tem as software that both multiplexes and abstracts

physical resources� The view that the OS should ab�
stract the hardware is based on the assumption that it
is possible both to de�ne abstractions that are appro�
priate for all areas and to implement them to perform
e�ciently in all situations� We believe that the fallacy
of this quixotic goal is self�evident� and that the op�
erating system problems of the last two decades �poor
performance� poor reliability� poor adaptability� and
in�exibility	 can be traced back to it� The solution we
propose is simple
 complete elimination of operating
system abstractions by lowering the operating system
interface to the hardware level�

� Introduction

Throughout the history of computer science there
has been a fairly constant opinion that �current� oper�
ating systems are inadequate 
�� �� �� ��� ��� ���� The
literature is rife with speci�c examples that describe
the cost of the inappropriate� ine�cient abstractions
peddled by operating systems 
�� �� ��� ��� ��� ��� ����
This situation has persisted for the last three decades�
and has survived numerous assaults �object�oriented
operating systems and micro�kernels are two of the
more popular movements	� As a general rule� a con�
cept that cannot be realized after such a long period
of time should be reexamined�

The standard de�nition of an operating system is
software that securely multiplexes and abstracts phys�
ical resources� We believe that this de�nition� speci��
cally its view of the OS as an abstractor of hardware�
is crippling and wrong� The basic intuition behind
our arguments is that no OS abstraction can �t all
applications� This is not a characteristic that is just

a release away
 it is fundamentally impossible to ab�
stract resources in a way that is useful to all appli�
cations and to implement these abstractions in a way
that is e�cient across disparate needs� For some rea�
son� OS implementors have decided that this simple
law does not apply to them and that� indeed� they
are compelled to indulge in the wholesale abstraction
of hardware resources� In this position paper we con�
centrate on the following characteristics of operating
systems that have been built in this manner
 they are
complex and large� which decreases system reliability
and aggressively discourages change� they are overly
general� which makes their use expensive and makes
their implementation consume signi�cant fractions of
machine resources� and they enforce a high�level inter�
face� which precludes the e�cient implementation of
new abstractions outside of the OS�

We believe� therefore� that the attempt to pro�
vide OS abstractions is the root of all operating sys�
tem problems� We contend that these problems can
be solved directly by the systematic elimination of OS
abstractions� lowering the interface enforced by the OS
to a level close to the raw hardware� It is important
to note that we favor abstractions� but they should
be implemented outside the operating system so that
applications can select among a myriad of implemen�
tations or� if necessary� �roll their own��

The structure of this paper is as follows
 Sec�
tion � expounds our ideology� Section � outlines spe�
ci�c features of our target operating system structure�
and Section � explores some of the advantages of this
new OS structure and some commonmisconceptions in
such a structure� We discuss related work in Section �
and conclude in Section ��

This work was supported in part by the Advanced Research

Projects Agency under contracts N��������������� and by a

NSF National Young Investigator Award	



� The Jeremiad

For this paper� we de�ne the operating system as
any piece of software that the application cannot either
change or avoid� User�level device drivers� privileged
servers� and kernels are all included by this de�nition�
The goal of the OS designer should be to push the in�
terface this de�nes to the level of the raw hardware�
We de�ne application�level software as software that
can be changed and�or avoided by any application�
this is in contrast to software at user�level �or in user�

space	� which may require very high privileges to adapt
or replace �e�g�� replacing a device driver often requires
�root� privileges	� Much of the �xation micro�kernels
have with putting pieces of the kernel into user�space
comes from a confusion between user and application
level�

The thesis of this position paper is that the op�
erating system should not abstract physical resources�
What the OS should do is what no other piece of soft�
ware can do
 safely multiplex physical resources� The
motivation for this decision can be placed in the con�
text of the �end�to�end� argument 
���
 OS abstrac�
tions are reduntant or of little value when compared
to the cost of providing them� We explore these issues
more thoroughly below


Poor reliability Abstracting resources �e�g�� pro�
viding a full�featured virtual memory system with
copy�on�write� memory�mapped I�O and other treats	
requires a large amount of complex� multi�threaded
code� These characteristics� along with dynamic stor�
age allocation and management and the paging of ker�
nel data structures and code� greatly decrease the re�
liability the system�

Poor adaptability The OS is large and compli�
cated� Changing large� complicated pieces of software
is hard� This creates a disincentive to incorporate new
features or tune existing ones� Furthermore� since all
applications �depend on� the OS� change is not local�
ized� This provides an additional discouragement to
adapting the OS implementation� Finally� only the
kernel architect can incorporate new changes� which
further restricts adaptability� The e�ects of this can
be seen directly
 how many of the good ideas in the
last �� SOSP conferences have been incorporated �or
allowed at application�level	 by any operating system
other than the one they were developed on� For exam�
ple� what operating systems support multiple protec�
tion domains within a single�address space� e�cient
IPC� or e�cient and �exible virtual memory primi�
tives�

Poor performance OS abstractions are often
overly general� as they provide any feature needed by
any reasonable application and all applications must
use a given OS abstraction� Applications that do not
need this feature pay unnecessary overhead 
�� ���� In
the case of garbage collectors or database systems this
cost can amount to an order of magnitude� Addition�
ally� simply using a given feature is costly� since time
must be spent selecting from a myriad of options 
����
Furthermore� the mere existence of OS abstractions
consumes signi�cant amounts of main memory� cache
space� TLB space� and cycles� which could be used by
applications to perform useful work�

Finally� any OS implementation makes trade�o�s

whether to use a hierarchical or inverted page�table�
whether to optimize for frequent reads or random
writes� whether to have copy�on�write or a large page
size� etc� Unfortunately� any trade�o� penalizes appli�
cations that were not anticipated or neglected by the
OS designer� However� this situation is easily avoid�
able
 if the OS does not abstract resources� it does not
have to such make trade�o�s�

Poor �exibility The poor reliability� poor adapt�
ability� and poor performance of operating systems
would be acceptable if applications could just ignore
the operating system and implement their own ab�
stractions� Unfortunately� the high�level nature of cur�
rent operating system interfaces makes this approach
infeasible� The best that applications can do is em�
ulate the desired feature on top of existing OS ab�
stractions� unfortunately� such emulation is typically
clumsy� complicated� and prohibitively expensive� For
example� once the application has no access to the raw
disk interface� database records must be emulated on
top of �les� The list of such examples is painfully long
and continues to grow 
�� �� ��� ��� ��� ����

In short� operating systems are complex� frag�
ile� in�exible� and slow� because they have dabbled
in the practice of providing a general purpose vir�
tual machine� The operating system is basically hard�
ware masquerading as software
 it cannot be changed�
all applications must use it� and the information it
hides cannot be recovered� Operating system design�
ers should learn what hardware designers learned a
decade ago during the transition from CISC to RISC

hardware should provide primitives� not high�level ab�
stractions�



� The Solution� Eliminate OS Ab�

stractions

We contend that the solution to all of these di��
culties is straightforward
 eliminate operating system
abstractions� The OS should only export physical re�
sources in a secure manner� it should not be in the
business of presenting a pretty� machine�independent
interface to applications�

In this section we give a general sketch of an OS
structure that embodies a �abstraction�free�� low�level
interface� We call such a structure an exokernel� The
sole function of an exokernel is to allocate� deallocate�
and multiplex physical resources in a secure way� The
resources exported by this kernel are those provided by
the underlying hardware
 physical memory �divided
into pages	� the CPU �divided into time�slices	� disk
memory �divided into blocks	� DMA channels� I�O de�
vices� translation look�aside bu�er� addressing context
identi�ers� and interrupt�trap events�

Security is enforced by associating every resource
usage or binding point with a guard that checks access
privileges� For example� as one of the steps in pre�
serving memory integrity� the kernel guards the TLB
by checking any virtual�to�physical mappings given by
applications before they are inserted into the TLB�

The kernel can optimize global performance by its
control over the allocation and revocation of physi�
cal resources� With this control it can enforce pro�
portional sharing� or what resources are allocated to
which domains�

To make these examples concrete� we detail what
address spaces� time�slices� and IPC might look like
under the regime we have described� The details we
present are highly machine�speci�c� but the general
outline should be similar across machines� the main
goal in each is to answer the question
 what is the
minimum functionality that the kernel needs to pro�
vide in order for this primitive to be implemented in
application space�

Address space To allow application�implemented
virtual memory� the OS must support bootstrapping
of page�tables� allocation of physical memory� modi��
cation of mapping hardware �e�g�� TLB	� and excep�
tion propagation� The simplest bootstrapping mech�
anism is to provide a small number of �guaranteed
mappings� that can be used to map the page�table and
exception handling code� Physical memory allocation
should support requests for a given page number �en�
abling such techniques as �page�coloring� for improved
caching 
��	� Privileged instructions �e�g�� �ush� probe�
and modify instructions	 can be wrapped in systems

calls� and those that write to privileged state �e�g��
TLB write instructions	 are associated with access
checks� Exception propagation is done in a direct man�
ner by �perhaps	 saving a few scratch registers in some
agreed�upon location in application�space and then
jumping to an application�speci�ed PC�address 
����

Of course� all of these operations can be sped up
by downloading application code into the kernel 
�� ��
or using a �software TLB� 
��� �� to cache translations�
These implementation techniques aside� the full func�
tionality provided by the underlying hardware should
be exposed �e�g�� reference bits� the ability to disable
caching on a page�basis� the ability to use di�erent
pagesizes� etc�	�

Process The only state that the operating system
needs to de�ne a process is a set of exception program
counters that the operating system will jump to on an
exception� an associated address space� and both pro�
logue and epilogue code to be called when a time�slice
is initiated and expires� Placing context�switching
under application control �through the application�
de�ned prologue and epilogue code	 enables techniques
such as moving the program counter out of critical sec�
tions at context�switch time 
���

IPC The basic functionality required by IPC is sim�
ply the transfer of a PC from one protection domain
to an agreed�upon value in another� with the donation
of the current time�slice� installation of the called do�
main�s exception context� and an indication of which
process initiated the call� This extremely lightweight�
synchronous� cross�domain calling mechanism imple�
ments the bare�minimum required by any IPC mecha�
nism� allowing the application to pay for just the func�
tionality that it requires� For example� a client that
trusts a server may allow the server to save and re�
store the registers it needs� instead of saving the entire
register �le on every IPC� Since the machine state of
current RISC machines is growing larger 
���� this can
be crucial for good performance�

This is far from a complete enumeration of all system
objects �for example� we neglect disks and devices	�
but should give a feel for what level of functionality
the OS is required to provide� The bare minimum is
much removed from the policy�laden� overly general�
and restrictive implementations surrounding us today�
�A more complete discussion and evaluation of the ex�
okernel methodology and a prototype exokernel can be
found in Engler 
���� our prototype exokernel performs
������ times faster than a mature monolithic system



in operations such as as IPC� exception forwarding�
and virtual memory manipulations�	

� Discussion

We discuss how our proposed structure solves the
traditional problems of reliability� e�ciency� and ex�
tensibility� these points have at their core the simple
principle that the most e�cient� reliable� and extensi�
ble OS abstraction is the one that is not there�

Reliability Exposing hardware resources safely and
e�ciently requires neither sophisticated algorithms or
many lines of code� As a result� the operating system
can be small and readily understood
 both of these
properties aid correctness�

Additionally� the application�level implementation
of operating system services is likely to be much sim�
pler in structure and smaller in realization than a tra�
ditional� general�purpose OS� For example� it does not
have to multithread among multiple malicious enti�
ties� or worry about peculiar characteristics of supervi�
sor mode �e�g�� the particular locking constraints that
arise within the kernel to guard against loss of inter�
rupts and deadlock	� Finally� since this application
OS �trusts� the application� it can use application
state directly and simply� a general�purpose OS is con�
stantly in the business of copying user data� guarding
against illegal addresses� and checking for validity� All
of these concerns can be ignored in an application�level
OS since� if the application does something wrong� the
damage is to itself only�

Adaptability The kernel�s simplicity enables easy
modi�cation� Furthermore� since most of the operat�
ing system code is used simply to track ownership and
access rights� there is not much that needs to be tuned�

By allowing application�level implementations� we
have removed the dependence of the entire system on
the implementation� In other words� by localizing ex�
periments within a single operating system subsystem
�library or server	� applications that wish to use the
new feature can link it in� Those that do not� do not
need to� Traditional operating systems occupy the un�
fortunate position of having every application depend
on their correct and appropriate implementation� This
�depends on� relationship drastically limits the degree
to which experimentation can be carried out and the
results used�

A more prosaic example of improved adaptability
is that the implementation can now occur in applica�
tion space� with access to user�development environ�
ments �e�g�� debuggers and pro�lers	�

E�ciency Resource management has been put into
application space� allowing implementations to ex�
ploit application�speci�c knowledge in making trade�
o�s �e�g�� optimizing for reads or randomwrites� sparse
address spaces� etc�	� furthermore� since implementa�
tions can be highly specialized� they can eliminate
the cost of generality present in most OS abstrac�
tions� From an engineering standpoint� this struc�
ture allows a broad pool of non�kernel architects to
implement alternative implementations� Since the en�
tire system does not depend on these implementations�
application�level operating systems can be readily ex�
perimented with and altered by non�privileged imple�
mentors� furthermore� these operating systems will be
readily used� since they do not have to be used by
the entire system �and hence trusted in a very real
sense	� Finally� since all operations can occur in the
same address space� the current contortions to mini�
mize the cross�domain costs of TLB pollution�misses�
system call traps� and context�switches are completely
obviated�

Flexibility Applications can now implement system
objects in ways that are fundamentally impossible
on traditional operating systems� Radical page�table
structures� process abstractions� address spaces� and
�lesystems can be constructed safely and e�ciently on
top of this structure� We expect that this freedom
will enable a broad class of applications that are not
feasible under current operating systems�

The ability of application�level operating systems
to support powerful� e�cient� and unusual abstrac�
tions cannot be overemphasized� By allowing any ap�
plication writer to implement fundamental system ob�
jects� the degree� ease� and pervasiveness of experi�
mentation and utilization of the results of this experi�
mentation can dramatically increase�

We discuss some frequently asked questions about
the methodology we have proposed�

Won�t executables become large� As a prac�
tical matter� libraries that implement traditional ab�
stractions can be sizable� However� shared libraries
can be used to combat this problem� They have been
used successfully in equivalent situations� For exam�
ple� the X�window libraries are typically dynamically
linked� In the worst case� servers can be used to mul�
tiplex code� data and threads of control�

Doesn�t this cause portability problems�

There are two levels of portability that must be pro�
vided� machine portability and OS interface porta�
bility� The �rst may be achieved in the standard



manner
 namely� a low�level layer that hides machine
dependence� The second can be achieved through
application�level implementations of industry stan�
dards �e�g�� POSIX	� The important di�erence is that
the implementation of these layers are now in appli�
cation space and� therefore� can be replaced without
special privileges� simplifying the addition and devel�
opment of new standards and features not anticipated
by kernel architects�

What happens to the system structure

when any application can de�ne its own inter�

faces� As language� GUI and standard library imple�
mentors can attest� preventing a Babel of incompatible
interfaces is simple
 de�ne standards and conventions�
As we argue in this position paper� the e�ects of hard�
wiring high�level interfaces into the system structure
are a convincing demonstration that such an approach
is not the right way to de�ne a standard� In closing�
while an exokernel allows the possibility of a chaotic
system it also allows the creation of a harmonious� el�
egant one as well
 a system whose structure does not
have to be anticipated by kernel architects�

How can system state be shared� Trusted
�or at least highly accountable	 servers can be used
to manage shared� fault�isolated caches of system ob�
jects such as �le�bu�ers� This methodology is has been
explored in the context of microkernels� many of the
lessons learned are directly applicable to exokernels�

� Related Work

Micro�kernels were originally intended to solve
many of the problems we have listed� Unfortunately�
they have �oundered for a number of reasons� First�
while they allow replacing of device drivers and high�
level servers� such operations typically can only be
done by trusted applications� Second� they are still in
the business of providing a virtual machine to applica�
tions� The high�level interface that they enforce pre�
cludes much of the experimentation that we desire �the
reader is invited to compare the primitives described in
Section � to current micro�kernels	� Third� their rigid
interface tends to be rudimentary when compared to
their monolithic counterparts� they often achieve sim�
plicity by implementing only a small set of high�level
OS abstractions� For example� a micro�kernel may
have achieved simplicity by dropping support for mmap�
memory�mapped I�O� and full�featured virtual mem�
ory� but not given alternative mechanisms to imple�
ment the functionality these features provided
 micro�
kernels can give applications even less control over
hardware resources than a monolithic system does�

Microkernel architects have realized that an op�
erating system should be small� the crucial mistake

they have made is in determining how an OS should

get this way� It should become small not by enforc�
ing a limited set of high�level operations� but instead�
through the systematic elimination of all operating
system abstractions in order to expose the hardware to
application�level software� from this primal mud� ap�
plications can craft their own abstractions� chosen for
appropriateness and e�ciency� rather than make do
with abstractions force�fed under duress� With micro�
kernels� applications can have even fewer options than
with monolithic ones�

Two current OS research e�orts� the Cache Ker�
nel 
�� and Aegis 
�� ���� adhere closely to our precepts
for a model operating system� Further experience is
needed to see if a low�level kernel interface is indeed
the panacea that can cure current operating system
troubles�

The open operating system for a single�user ma�
chine is motived by similar observations as the ones
that motivate the exokernel 
���� However� the ap�
proach taken to extensibility taken is di�erent� The
exokernel�s main task is secure multiplexing� while in
the open operating system protection is not an issue at
all� since it relies on the fact it is designed for a single�
user machine� In addition� the exokernel attempts to
de�ne no OS abstractions� while in the open operat�
ing systems the �le system and communications are
standardized� Despite these di�erences� one can view
the exokernel architecture as an instance of an open
operating system�

The interface provided by the VM���� OS 
�� is
very similar to what would be provided by our ideal
OS
 namely� the raw hardware� However� the impor�
tant di�erence is that VM���� provides this interface
by virtualizing the entire base�machine� Since this ma�
chine can be quite complicated and expensive to em�
ulate faithfully� virtualization can result in a complex
and ine�cient OS� In contrast� our approach exports

hardware resources rather than emulates them� allow�
ing an e�cient and fast implementation�

OS extensibility has a long history 
��� ���� Cur�
rent attempts include SPIN 
��� Bridge 
���� and
Vino 
���� Some of the techniques used in these sys�
tems� such as type�safe languages and software fault�
isolation 
���� are also applicable to exokernels� The
commercial world has long looked at this issue in the
form of unsafe dynamically loaded device drivers�

� Conclusions

Two decades ago� Lampson summarized the state
of the art� unfortunately� his characterization is still
apt




A considerable amount of bitter experience
in the design of operating systems has been
accumulated in the last few years� both by
the designers of the systems which are cur�
rently in use and by those who have been
forced to use them� As a result� many peo�
ple have been led to the conclusion that
some radical changes must be made� both
in the way we think about the functions of
operating systems and in the way they are
implemented 
����

We believe that these problems can be solved by low�
ering the interface to the hardware that is enforced by
the kernel
 namely� by exporting physical resources to
applications directly� Management and abstraction of
these resources can then be specialized for simplicity�
e�ciency� and appropriateness�

The low�level interface of our proposed OS struc�
ture would have allowed the bulk of operating system
research in the last two decades to have been done eas�
ily and safely in application space� Furthermore� the
impact of this research could have been much greater�
since the implementation of its ideas could have been
localized to speci�c applications�

References

��� T�E� Anderson� B�N� Bershad� E�D� Lazowska� and
H�M� Levy� Scheduler activations� E�ective kernel
support for the user�level management of parallelism�
In Proc� Thirteenth Symposium on Operating System

Principles� pages 	
���	� October �		��

�
� A�W� Appel and K� Li� Virtual memory primitives for
user programs� In Proceedings of the Fourth Interna�
tional Conference on ASPLOS� pages 	������ Santa
Clara� CA� April �		��

��� K� Bala� M�F� Kaashoek� and W�E� Weihl� Soft�
ware prefetching and caching for translation lookaside
bu�ers� In Proceedings of the First Symposium on
OSDI� pages 
���

�� June �		��

��� B�N� Bershad� C� Chambers� S� Eggers� C� Maeda�
D� McNamee� P� Pardyak� S� Savage� and E� Sirer�
SPIN � an extensible microkernel for application�
speci�c operating system services� TR 	�������� Univ�
of Washington� February �		��

�
� B�N� Bershad� D� Lee� T�H� Romer� and J�B� Chen�
Avoiding con�ict misses dynamically in large direct�
mapped caches� In ASPLOS�VI� �		��

��� B�N� Bershad� D�D� Redell� and J�R� Ellis� Fast mu�
tual exclusion for uniprocessors� In Proc� of the Conf�
on Architectural Support for Programming Languages
and Operating Systems� pages 

��
��� October �		
�

��� D� Cheriton and K� Duda� A caching model of operat�
ing system kernel functionality� In Proceedings of the

Sixth SIGOPS European Workshop� September �		��

��� R� J� Creasy� The origin of the VM���� time�
sharing system� IBM J� Research and Development�


�
�������	�� September �	���

�	� D� R� Engler� M� F� Kaashoek� and J� O�Toole� The
operating system kernel as a secure programmable
machine� In Proceedings of the Sixth SIGOPS Euro�

pean Workshop� September �		��

���� Dawson R� Engler� The design and implementation of
a prototype exokernel operating system� Master�s the�
sis� MIT� 
�
 Technology Square� Boston MA �
��	�
February �		
�

���� Per Brinch Hansen� The nucleus of a multipro�
gramming system� Communications of the ACM�
������
���
��� April �	���

��
� J�H� Hartman� A�B� Montz� David Mosberger� S�W�
O�Malley� L�L� Peterson� and T�A� Proebsting� Scout�
A communication�oriented operating system� Techni�
cal Report TR 	��
�� University of Arizona� Tucson�
AZ� June �		��

���� K� Harty and D�R� Cheriton� Application�controlled
physical memory using external page�cache manage�
ment� In Proceedings of the Fifth International Con�
ference on ASPLOS� pages �����		� October �		
�

���� J� Huck and J� Hays� Architectural support for trans�
lation table management in large address space ma�
chines� In Proceedings of the ��th International Sym�

posium on Computer Architecture� �		
�

��
� B�W� Lampson� On reliable and extendable operating
systems� State of the Art Report� �� �	���

���� B�W� Lampson and R�F� Sproull� An open operat�
ing system for a single�user machine� Proceedings of

the Seventh ACM Symposium on Operating Systems
Principles� pages 	����
� �	�	�

���� Steven Lucco� High�performance microkernel systems
�abstract�� In Proc� of the �rst Symp� on OSDI�
November �		��

���� H� Massalin� Synthesis� an e�cient implementation
of fundamental operating system services� PhD thesis�
Columbia University� �		
�

��	� J� K� Ousterhout� Why aren�t operating systems get�
ting faster as fast as hardware� In Proc� Summer

Usenix� pages 
���

�� June �		��

�
�� D�D� Redell� Y�K� Dalal� T�R� Horsley� H�C� Lauer�
W�C� Lynch� P�R� McJones� H�G� Murray� and S�C�
Purcell� Pilot� An operating system for a personal
computer� Communications of the ACM� 
��
�����	
�
February �	���

�
�� J�H� Saltzer� D�P� Reed� and D�D� Clark� End�to�end
arguments in system design� Proc� of the Fifth SOSP�
pages 
�	�
�
� �	���

�

� Margo Seltzer et al� An introduction to the architec�
ture of the VINO kernel� November �		��

�
�� M� Stonebraker� Operating system support for
database management� CACM� 
�������
����� July
�	���

�
�� C� A� Thekkath and Henry M� Levy� Hardware and
software support for e�cient exception handling� In
Sixth Conf� on ASPLOS� �		��

�

� R� Wahbe� S� Lucco� T� Anderson� and S� Graham�
E�cient software�based fault isolation� In Proc� of
Fourteenth SOSP� pages 
���
��� �		��


