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Preface

The computing world has undergone a revolution since the publication of
The C Programming Language in 1978. Big computers are much bigger, and
personal computers have capabilities that rival the mainframes of a decade ago.
During this time, C has changed too, although only modestly, and it has spread
far beyond its origins as the language of the UNIX operating system.

The growing popularity of C, the changes in the language over the years,
and the creation of compilers by groups not involved in its design, combined to
demonstrate a need for a more precise and more contemporary definition of the
language than the first edition of this book provided. In 1983, the American
National Standards Institute (ANSI) established a committee whose goal was to
produce “an unambiguous and machine-independent definition of the language
C,” while still retaining its spirit. The result is the ANSI standard for C.

The standard formalizes constructions that were hinted at but not described
in the first edition, particularly structure assignment and enumerations. It pro-
vides a new form of function declaration that permits cross-checking of defini-
tion with use. It specifies a standard library, with an extensive set of functions
for performing input and output, memory management, string manipulation,
and similar tasks. It makes precise the behavior of features that were not
spelled out in the original definition, and at the same time states explicitly
which aspects of the language remain machine-dependent.

This second edition of The C Programming Language describes C as defined
by the ANSI standard. Although we have noted the places where the language
has evolved, we have chosen to write exclusively in the new form. For the most
part, this makes no significant difference; the most visible change is the new
form of function declaration and definition. Modern compilers already support
most features of the standard.

We have tried to retain the brevity of the first edition. C is not a big
language, and it is not well served by a big book. We have improved the exposi-
tion of critical features, such as pointers, that are central to C programming.
We have refined the original examples, and have added new examples in several
chapters. For instance, the treatment of complicated declarations is augmented
by programs that convert declarations into words and vice versa. As before, all

ix
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examples have been tested directly from the text, which is in machine-readable
form.

Appendix A, the reference manual, is not the standard, but our attempt to
convey the essentials of the standard in a smaller space. It is meant for easy
comprehension by programmers, but not as a definition for compiler writers—
that role properly belongs to the standard itself. Appendix B is a summary of
the facilities of the standard library. It too is meant for reference by program-
mers, not implementers. Appendix C is a concise summary of the changes from
the original version.

As we said in the preface to the first edition, C “wears well as one’s experi-
ence with it grows.” With a decade more experience, we still feel that way.
We hope that this book will help you to learn C and to use it well.

We are deeply indebted to friends who helped us to produce this second edi-
tion. Jon Bentley, Doug Gwyn, Doug Mcllroy, Peter Nelson, and Rob Pike
gave us perceptive comments on almost every page of draft manuscripts. We
are grateful for careful reading by Al Aho, Dennis Allison, Joe Campbell, G. R.
Emlin, Karen Fortgang, Allen Holub, Andrew Hume, Dave Kristol, John
Linderman, Dave Prosser, Gene Spafford, and Chris Van Wyk. We also
received helpful suggestions from Bill Cheswick, Mark Kernighan, Andy
Koenig, Robin Lake, Tom London, Jim Reeds, Clovis Tondo, and Peter Wein-
berger. Dave Prosser answered many detailed questions about the ANSI stand-
ard. We used Bjarne Stroustrup’s C++ translator extensively for local testing
of our programs, and Dave Kristol provided us with an ANSI C compiler for
final testing. Rich Drechsler helped greatly with typesetting.

Our sincere thanks to all.

Brian W. Kernighan
Dennis M. Ritchie



Preface to the First Edition

C is a general-purpose programming language which features economy of
expression, modern control flow and data structures, and a rich set of operators.
C is not a “very high level” language, nor a “big” one, and is not specialized to
any particular area of application. But its absence of restrictions and its gen-
erality make it more convenient and effective for many tasks than supposedly
more powerful languages.

C was originally designed for and implemented on the UNIX operating sys-
tem on the DEC PDP-11, by Dennis Ritchie. The operating system, the C com-
piler, and essentially all UNIX applications programs (including all of the
software used to prepare this book) are written in C. Production compilers also
exist for several other machines, including the IBM System/370, the Honeywell
6000, and the Interdata 8/32. C is not tied to any particular hardware or sys-
tem, however, and it is easy to write programs that will run without change on
any machine that supports C.

This book is meant to help the reader learn how to program in C. It con-
tains a tutorial introduction to get new users started as soon as possible,
separate chapters on each major feature, and a reference manual. Most of the
treatment is based on reading, writing and revising examples, rather than on
mere statements of rules. For the most part, the examples are complete, real
programs, rather than isolated fragments. All examples have been tested
directly from the text, which is in machine-readable form. Besides showing how
to make effective use of the language, we have also tried where possible to illus-
trate useful algorithms and principles of good style and sound design.

The book is not an introductory programming manual; it assumes some fam-
iliarity with basic programming concepts like variables, assignment statements,
loops, and functions. Nonetheless, a novice programmer should be able to read
along and pick up the language, although access to a more knowledgeable col-
league will help.

In our experience, C has proven to be a pleasant, expressive, and versatile
language for a wide variety of programs. It is easy to learn, and it wears well
as one’s experience with it grows. We hope that this book will help you to use it
well.

xi



xii  PREFACE TO THE IST EDITION

The thoughtful criticisms and suggestions of many friends and colleagues
have added greatly to this book and to our pleasure in writing it. In particular,
Mike Bianchi, Jim Blue, Stu Feldman, Doug Mcllroy, Bill Roome, Bob Rosin,
and Larry Rosler all read multiple versions with care. We are also indebted to
Al Aho, Steve Bourne, Dan Dvorak, Chuck Haley, Debbie Haley, Marion
Harris, Rick Holt, Steve Johnson, John Mashey, Bob Mitze, Ralph Muha, Peter
Nelson, Elliot Pinson, Bill Plauger, Jerry Spivack, Ken Thompson, and Peter
Weinberger for helpful comments at various stages, and to Mike Lesk and Joe
Ossanna for invaluable assistance with typesetting.

Brian W. Kernighan
Dennis M. Ritchie



Introduction

C is a general-purpose programming language. It has been closely associ-
ated with the UNIX system where it was developed, since both the system and
most of the programs that run on it are written in C. The language, however, is
not tied to any one operating system or machine; and although it has been
called a “system programming language” because it is useful for writing com-
pilers and operating systems, it has been used equally well to write major pro-
grams in many different domains.

Many of the important ideas of C stem from the language BCPL, developed
by Martin Richards. The influence of BCPL on C proceeded indirectly through
the language B, which was written by Ken Thompson in 1970 for the first
UNIX system on the DEC PDP-7.

BCPL and B are “typeless” languages. By contrast, C provides a variety of
data types. The fundamental types are characters, and integers and floating-
point numbers of several sizes. In addition, there is a hierarchy of derived data
types created with pointers, arrays, structures, and unions. Expressions are
formed from operators and operands; any expression, including an assignment or
a function call, can be a statement. Pointers provide for machine-independent
address arithmetic.

C provides the fundamental control-flow constructions required for well-
structured programs: statement grouping, decision making (if-else), selecting
one of a set of possible cases (switch), looping with the termination test at the
top (while, for) or at the bottom (do), and early loop exit (break).

Functions may return values of basic types, structures, unions, or pointers.
Any function may be called recursively. Local variables are typically
“automatic,” or created anew with each invocation. Function definitions may
not be nested but variables may be declared in a block-structured fashion. The
functions of a C program may exist in separate source files that are compiled
separately. Variables may be internal to a function, external but known only
within a single source file, or visible to the entire program.

A preprocessing step performs macro substitution on program text, inclusion
of other source files, and conditional compilation.

C is a relatively “low level” language. This characterization is not
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pejorative; it simply means that C deals with the same sort of objects that most
computers do, namely characters, numbers, and addresses. These may be com-
bined and moved about with the arithmetic and logical operators implemented
by real machines.

C provides no operations to deal directly with composite objects such as
character strings, sets, lists, or arrays. There are no operations that manipulate
an entire array or string, although structures may be copied as a unit. The
language does not define any storage allocation facility other than static defini-
tion and the stack discipline provided by the local variables of functions; there is
no heap or garbage collection. Finally, C itself provides no input/output facili-
ties; there are no READ or WRITE statements, and no built-in file access
methods. All of these higher-level mechanisms must be provided by explicitly-
called functions. Most C implementations have included a reasonably standard
collection of such functions.

Similarly, C offers only straightforward, single-thread control flow: tests,
loops, grouping, and subprograms, but not multiprogramming, parallel opera-
tions, synchronization, or coroutines.

Although the absence of some of these features may seem like a grave defi-
ciency (“You mean I have to call a function to compare two character
strings?”), keeping the language down to modest size has real benefits. Since C
is relatively small, it can be described in a small space, and learned quickly. A
programmer can reasonably expect to know and understand and indeed regu-
larly use the entire language.

For many years, the definition of C was the reference manual in the first
edition of The C Programming Language. In 1983, the American National
Standards Institute (ANSI) established a committee to provide a modern,
comprehensive definition of C. The resulting definition, the ANSI standard, or
“ANSI C,” was completed late in 1988. Most of the features of the standard
are already supported by modern compilers.

The standard is based on the original reference manual. The language is
relatively little changed; one of the goals of the standard was to make sure that
most existing programs would remain valid, or, failing that, that compilers could
produce warnings of new behavior.

For most programmers, the most important change is a new syntax for
declaring and defining functions. A function declaration can now include a
description of the arguments of the function; the definition syntax changes to
match. This extra information makes it much easier for compilers to detect
errors caused by mismatched arguments; in our experience, it is a very useful
addition to the language.

There are other small-scale language changes. Structure assignment and
enumerations, which had been widely available, are now officially part of the
language. Floating-point computations may now be done in single precision.
The properties of arithmetic, especially for unsigned types, are clarified. The
preprocessor is more elaborate. Most of these changes will have only minor
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effects on most programmers.

A second significant contribution of the standard is the definition of a library
to accompany C. It specifies functions for accessing the operating system (for
instance, to read and write files), formatted input and output, memory alloca-
tion, string manipulation, and the like. A collection of standard headers pro-
vides uniform access to declarations of functions and data types. Programs that
use this library to interact with a host system are assured of compatible
behavior. Most of the library is closely modeled on the “standard 1/0O library”
of the UNIX system. This library was described in the first edition, and has
been widely used on other systems as well. Again, most programmers will not
see much change. '

Because the data types and control structures provided by C are supported
directly by most computers, the run-time library required to implement self-
contained programs is tiny. The standard library functions are only called
explicitly, so they can be avoided if they are not needed. Most can be written in
C, and except for the operating system details they conceal, are themselves port-
able.

Although C matches the capabilities of many computers, it is independent of
any particular machine architecture. With a little care'it is easy to write port-
able programs, that is, programs that can be run without change on a variety of
hardware. The standard makes portability issues explicit, and prescribes a set
of constants that characterize the machine on which the program is run.

C is not a strongly-typed language, but as it has evolved, its type-checking
has been strengthened. The original definition of C frowned on, but permitted,
the interchange of pointers and integers; this has long since been eliminated, and
the standard now requires the proper declarations and explicit conversions that
had already been enforced by good compilers. The new function declarations
are another step in this direction. Compilers will warn of most type errors, and
there is no automatic conversion of incompatible data types. Nevertheless, C
retains the basic philosophy that programmers know what they are doing; it only
requires that they state their intentions explicitly.

C, like any other language, has its blemishes. Some of the operators have
the wrong precedence; some parts of the syntax could be better. Nonetheless, C
has proven to be an extremely effective and expressive language for a wide
variety of programming applications.

The book is organized as follows. Chapter 1 is a tutorial on the central part
of C. The purpose is to get the reader started as quickly as possible, since we
believe strongly that the way to learn a new language is to write programs in it.
The tutorial does assume a working knowledge of the basic elements of pro-
gramming; there is no explanation of computers, of compilation, nor of the
meaning of an expression like n=n+1. Although we have tried where possible to
show useful programming techniques, the book is not intended to be a reference
work on data structures and algorithms; when forced to make a choice, we have
concentrated on the language.
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Chapters 2 through 6 discuss various aspects of C in more detail, and rather
more formally, than does Chapter 1, although the emphasis is still on examples
of complete programs, rather than isolated fragments. Chapter 2 deals with the
basic data types, operators and expressions. Chapter 3 treats control flow:
if-else, switch, while, for, etc. Chapter 4 covers functions and program
structure—external variables, scope rules, multiple source files, and so on—and
also touches on the preprocessor. Chapter 5 discusses pointers and address
arithmetic. Chapter 6 covers structures and unions.

Chapter 7 describes the standard library, which provides a common interface
to the operating system. This library is defined by the ANSI standard and is
meant to be supported on all machines that support C, so programs that use it
for input, output, and other operating system access can be moved from one sys-
tem to another without change.

Chapter 8 describes an interface between C programs and the UNIX operat-
ing system, concentrating on input/output, the file system, and storage alloca-
tion. Although some of this chapter is specific to UNIX systems, programmers
who use other systems should still find useful material here, including some
insight into how one version of the standard library is implemented, and sugges-
tions on portability.

Appendix A contains a language reference manual. The official statement of
the syntax and semantics of C is the ANSI standard itself. That document,
however, is intended foremost for compiler writers. The reference manual here
conveys the definition of the language more concisely and without the same
legalistic style. Appendix B is a summary of the standard library, again for
users rather than implementers. Appendix C is a short summary of changes
from the original language. In cases of doubt, however, the standard and one’s
own compiler remain the final authorities on the language.



cHAPTER 1: A Tutorial Introduction

Let us begin with a quick introduction to C. Our aim is to show the essen-
tial elements of the language in real programs, but without getting bogged down
in details, rules, and exceptions. At this point, we are not trying to be complete
or even precise (save that the examples are meant to be correct). We want to
get you as quickly as possible to the point where you can write useful programs,
and to do that we have to concentrate on the basics: variables and constants,
arithmetic, control flow, functions, and the rudiments of input and output. We
are intentionally leaving out of this chapter features of C that are important for
writing bigger programs. These include pointers, structures, most of C’s rich set
of operators, several control-flow statements, and the standard library.

This approach has its drawbacks. Most notable is that the complete story on
any particular language feature is not found here, and the tutorial, by being
brief, may also be misleading. And because the examples do not use the full
power of C, they are not as concise and elegant as they might be. We have
tried to minimize these effects, but be warned. Another drawback is that later
chapters will necessarily repeat some of this chapter. We hope that the repeti-
tion will help you more than it annoys.

In any case, experienced programmers should be able to extrapolate from the
material in this chapter to their own programming needs. Beginners should sup-
plement it by writing small, similar programs of their own. Both groups can use
it as a framework on which to hang the more detailed descriptions that begin in
Chapter 2. '

1.1 Getting Started

The only way to learn a new programming language is by writing programs
in it. The first program to write is the same for all languages:

Print the words
hello, world

This is the big hurdle; to leap over it you have to be able to create the program
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text somewhere, compile it successfully, load it, run it, and find out where your
output went. With these mechanical details mastered, everything else is com-
paratively easy.

In C, the program to print “hello, world” is

#include <stdio.h>

main()
{

printf("hello, world\n");
}

Just how to run this program depends on the system you are using. As a
specific example, on the UNIX operating system you must create the program in
a file whose name ends in “.¢”, such as hello.c, then compile it with the
command

cc hello.c

If you haven’t botched anything, such as omitting a character or misspelling
something, the compilation will proceed silently, and make an executable file
called a.out. If you run a.out by typing the command

a.out
it will print
hello, world

On other systems, the rules will be different; check with a local expert.

Now for some explanations about the program itself. A C program, what-
ever its size, consists of functions and variables. A function contains state-
ments that specify the computing operations to be done, and variables store
values used during the computation. C functions are like the subroutines and
functions of Fortran or the procedures and functions of Pascal. Our example is
a function named, main. Normally you are at liberty to give functions whatever
names you like, but “main” is special—your program begins executing at the
beginning of main. This means that every program must have a main some-
where.

main will usually call other functions to help perform its job, some that you
wrote, and others from libraries that are provided for you. The first line of the
program,

#include <stdio.h>

tells the compiler to include information about the standard input/output
library; this line appears at the beginning of many C source files. The standard
library is described in Chapter 7 and Appendix B.

One method of communicating data between functions is for the calling
function to provide a list of values, called arguments, to the function it calls.
The parentheses after the function name surround the argument list. In this
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#include <stdio.h> include information about standard library
main() define a function named main
that receives no argument values

{ : statements of main are enclosed in braces
printf("hello, world\n"); main calls library function printf

to print this sequence of characters;

} \n represents the newline character

The first C program.

example, main is defined to be a function that expects no arguments, which is
indicated by the empty list ().

The statements of a function are enclosed in braces {}. The function main
contains only one statement,

printf("hello, world\n");

A function is called by naming it, followed by a parenthesized list of arguments,
so this calls the function printf with the argument "hello, world\n".
printf is a library function that prints output, in this case the string of char-
acters between the quotes.

A sequence of characters in double quotes, like "hello, world\n", is
called a character string or string constant. For the moment our only use of
character strings will be as arguments for printf and other functions.

The sequence \n in the string is C notation for the newline character, which
when printed advances the output to the left margin on the next line. If you
leave out the \n (a worthwhile experiment), you will find that there is no line
advance after the output is printed. You must use \n to include a newline
character in the printf argument; if you try something like

printf("hello, world

")s

the C compiler will produce an error message.

printf never supplies a newline automatically, so several calls may be used
to build up an output line in stages. Our first program could just as well have
been written
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#include <stdio.h>

main()

{
printf("hello, ");
printf("world");
printf("\n");

}

to produce identical output.

Notice that \n represents only a single character. An escape sequence like
\n provides a general and extensible mechanism for representing hard-to-type
or invisible characters. Among the others that C provides are \t for tab, \b
for backspace, \" for the double quote, and \\ for the backslash itself. There
- is a complete list in Section 2.3.

Exercise 1-1. Run the “hello, world” program on your system. Experiment
with leaving out parts of the program, to see what error messages you get. O

Exercise 1-2. Experiment to find out what happens when print£’s argument
string contains \c, where ¢ is some character not listed above. O

1.2 Variables and Arithmetic Expressions

The next program uses the formula °C = (5/9) (* F—32) to print the follow-
ing table of Fahrenheit temperatures and their centigrade or Celsius equivalents:

0 -17
20 -6
40 4
60 15
80 26
100 37
120 48
140 60
160 71
180 82
200 93
220 104
240 115
260 126
280 137
300 148

The program itself still consists of the definition of a single function named
main. It is longer than the one that printed “hello, world”, but not compli-
cated. It introduces several new ideas, including comments, declarations, vari-
ables, arithmetic expressions, loops, and formatted output.
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#include <stdio.h>

/% print Fahrenheit-Celsius table

for fahr = 0, 20, ..., 300 »/
main()
{
int fahr, celsius;
int lower, upper, step;
lower = 0; /% lower limit of temperature table %/
upper = 300; /% upper limit =/
step = 20; /% step size */
fahr = lower;
while (fahr <= upper) ({
celsius = 5 » (fahr-32) / 9;
printf("%d\t¥d\n", fahr, celsius);
fahr = fahr + step;
}
}

The two lines

/+ print Fahrenheit-Celsius table
for fahr = 0, 20, ..., 300 =/

are a comment, which in this case explains briefly what the program does. Any
characters between /+ and «/ are ignored by the compiler; they may be used
freely to make a program easier to understand. Comments may appear any-
where a blank or tab or newline can.

In C, all variables must be declared before they are used, usually at the
beginning of the function before any executable statements. A declaration
announces the properties of variables; it consists of a type name and a list of
variables, such as

int fahr, celsius;
int lower, upper, step;

The type int means that the variables listed are integers, by contrast with
float, which means floating point, i.e., numbers that may have a fractional
part. The range of both int and float depends on the machine you are
using; 16-bit ints, which lie between —32768 and +32767, are common, as are
32-bit ints. A float number is typically a 32-bit quantity, with at least six
significant digits and magnitude generally between about 10~ and 10*3%,

C provides several other basic data types besides int and float, including:

char character—a single byte
short short integer
long long integer

double  double-precision floating point
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The sizes of these objects are also machine-dependent. There are also arrays,
structures and unions of these basic types, pointers to them, and functions that
return them, all of which we will meet in due course.

Computation in the temperature conversion program begins with the assign-
ment statements

lower = 0;
upper = 300;
step = 20;
fahr = lower;

which set the variables to their initial values. Individual statements are ter-
minated by semicolons.

Each line of the table is computed the same way, so we use a loop that
repeats once per output line; this is the purpose of the while loop

while (fahr <= upper) {

}

The while loop operates as follows: The condition in parentheses is tested. If
it is true (fahr is less than or equal to upper), the body of the loop (the three
statements enclosed in braces) is executed. Then the condition is re-tested, and
if true, the body is executed again. When the test becomes false (fahr exceeds
upper) the loop ends, and execution continues at the statement that follows the
loop. There are no further statements in this program, so it terminates.

The body of a while can be one or more statements enclosed in braces, as
in the temperature converter, or a single statement without braces, as in

while (i < j)
i=24+1ij

In either case, we will always indent the statements controlled by the while by
one tab stop (which we have shown as four spaces) so you can see at a glance
which statements are inside the loop. The indentation emphasizes the logical
structure of the program. Although C compilers do not care about how a pro-
gram looks, proper indentation and spacing are critical in making programs easy
for people to read. We recommend writing only one statement per line, and
using blanks around operators to clarify grouping. The position of braces is less
important, although people hold passionate beliefs. We have chosen one of
several popular styles. Pick a style that suits you, then use it consistently.

Most of the work gets done in the body of the loop. The Celsius tempera-
ture is computed and assigned to the variable celsius by the statement

celsius = 5 » (fahr-32) / 9;

The reason for multiplying by 5 and then dividing by 9 instead of just multiply-
ing by 5/9 is that in C, as in many other languages, integer division truncates:
any fractional part is discarded. Since 5 and 9 are integers, 5/9 would be
truncated to zero and so all the Celsius temperatures would be reported as zero.
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This example also shows a bit more of how printf works. printf is a
general-purpose output formatting function, which we will describe in detail in
Chapter 7. Its first argument is a string of characters to be printed, with each
% indicating where one of the other (second, third, ...) arguments is to be substi-
tuted, and in what form it is to be printed. For instance, %d specifies an integer
argument, so the statement

printf("¥d\t¥d\n", fahr, celsius);

causes the values of the two integers fahr and celsius to be printed, with a
tab (\t) between them. _

Each % construction in the first argument of printf is paired with the
corresponding second argument, third argument, etc.; they must match up prop-
erly by number and type, or you’ll get wrong answers.

By the way, printf is not part of the C language; there is no input or out-
put defined in C itself. printf is just a useful function from the standard
library of functions that are normally accessible to C programs. The behavior
of printf is defined in the ANSI standard, however, so its properties should be
the same with any compiler and library that conforms to the standard.

In order to concentrate on C itself, we won’t talk much about input and out-
put until Chapter 7. In particular, we will defer formatted input until then. If
you have to input numbers, read the discussion of the function scanf in Sec-
tion 7.4. scanf is like printf£, except that it reads input instead of writing
output.

There are a couple of problems with the temperature conversion program.
The simpler one is that the output isn’t very pretty because the numbers are not
right-justified. That’s easy to fix; if we augment each %d in the printf state-
ment with a width, the numbers printed will be right-justified in their fields.
For instance, we might say

printf("¥3d %64\n", fahr, celsius);

to print the first number of each line in a field three digits wide, and the second
in a field six digits wide, like this:

0 -17
20 -6
40 4
60 15
80 26

100 37

The more serious problem is that because we have used integer arithmetic,
the Celsius temperatures are not very accurate; for instance, 0°F is actually
about —17.8°C, not —17. To get more accurate answers, we should use
floating-point arithmetic instead of integer. This requires some changes in the
program. Here is a second version:
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#include <stdio.h>

/% print Fahrenheit-Celsius table

for fahr = 0, 20, ..., 300; floating-point version =/
main()
{
float fahr, celsius;
int lower, upper, step;
lower = 0; /% lower limit of temperature table x/
upper = 300; /+ upper limit »/
step = 20; /% step size »/
fahr = lower;
while (fahr <= upper) {
celsius = (5.0/9.0) » (fahr-32.0);
printf("%3.0f %6.1f\n", fahr, celsius);
fahr = fahr + step;
}
}

This is much the same as before, except that fahr and celsius are
declared to be float, and the formula for conversion is written in a more
natural way. We were unable to use 5/9 in the previous version because
integer division would truncate it to zero. A decimal point in a constant indi-
cates that it is floating point, however, so 5.0/9.0 is not truncated because it
is the ratio of two floating-point values.

If an arithmetic operator has integer operands, an integer operation is per-
formed. If an arithmetic operator has one floating-point operand and one
integer operand, however, the integer will be converted to floating point before
the operation is done. If we had written fahr-32, the 32 would be automati-
cally converted to floating point. Nevertheless, writing floating-point constants
with explicit decimal points even when they have integral values emphasizes
their floating-point nature for human readers.

The detailed rules for when integers are converted to floating point are in
Chapter 2. For now, notice that the assignment

fahr = lower;

and the test
while (fahr <= upper)

also work in the natural way—the int is converted to £loat before the opera-
tion is done.

The printf conversion specification %3.0f says that a floating-point
number (here fahr) is to be printed at least three characters wide, with no
decimal point and no fraction digits. %6.1f describes another number
(celsius) that is to be printed at least six characters wide, with 1 digit after
the decimal point. The output looks like this:
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0o -17.8
20 -6.7
40 4.4

Width and precision may be omitted from a specification: %6f says that the
number is to be at least six characters wide; %. 2f specifies two characters after
the decimal point, but the width is not constrained; and %£ merely says to print
the number as floating point.

%d print as decimal integer

%6d print as decimal integer, at least 6 characters wide

%£ print as floating point

%6£ print as floating point, at least 6 characters wide

%.2f print as floating point, 2 characters after decimal point

%6.2f print as floating point, at least 6 wide and 2 after decimal point

Among others, printf also recognizes %o for octal, %x for hexadecimal, %c for
character, %s for character string, and %% for % itself.

Exercise 1-3. Modify the temperature conversion program to print a heading
above the table. O

Exercise 1-4. Write a program to print the corresponding Celsius to Fahrenheit
table. O

1.3 The For Statement

There are plenty of different ways to write a program for a particular task.
Let’s try a variation on the temperature converter.

#include <stdio.h>

/#+ print Fahrenheit-Celsius table »/
main()
{

int fahr;

for (fahr = 0; fahr <= 300; fahr = fahr + 20)
printf("%3d4 %6.1f\n", fahr, (5.0/9.0)x(fahr-32));
}

This produces the same answers, but it certainly looks different. One major
change is the elimination of most of the variables; only fahr remains, and we
have made it an int. The lower and upper limits and the step size appear only
as constants in the for statement, itself a new construction, and the expression
that computes the Celsius temperature now appears as the third argument of
printf instead of as a separate assignment statement. :

This last change is an instance of a general rule—in any context where it is
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permissible to use the value of a vari.ible of some type, you can use a more com-
plicated expression of that type. Since the third argument of printf must be
a floating-point value to match the %6.1£, any floating-point expression can
occur there.

The for statement is a loop, a generalization of the while. If you compare
it to the earliuc while, its operation should be clear. Within the parentheses,
there are three parts, separated by semicolons. The first part, the initialization

fahr = 0

is done once, before the loop proper is entered. The second part is the test or
condition that controls the loop:

fahr <= 300

This condition is evaluated; if it is true, the body of the loop (here a single
printf) is executed. Then the increment step

fahr = fahr + 20

is executed, and the condition re-evaluated. The loop terminates if the condition
has become false. As with the while, the body of the loop can be a single
statement, or a group of statements enclosed in braces. The initialization, con-
dition, and increment can be any expressions.

The choice between while and for is arbgtrary, based on which seems
clearer. The for is usually appropriate for loops in which the initialization aid
increment are single statements and logically related, since it is more compact
than while and it keeps the loop control statements together in one place.

Exercise 1-5. Modify the temperature conversion program to print the table in
reverse order, that is, from 300 degrees to 0. O

1.4 Symbolic Constants

A final observation before we leave temperature conversion forever. It’s bad
practice to bury “magic numbers” like 300 and 20 in a program; they convey
little information to someone who might have to read the program later, and
they are hard to change in a systematic way. One way to deal with magic
numbers is to give them meaningful names. A #define line defines a sym-
bolic name or symbolic constant to be a particular string of characters:

#define name replacement text

Thereafter, any occurrence of name (not in quotes and not part of another
name) will be replaced by the corresponding replacement text. The name has
the same form as a variable name: a sequence of letters and digits that begins
with a letter. The replacement text can be any sequence of characters; it is not
limited to numbers. ‘
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#include <stdio.h>

#define LOWER O /% lower limit of table »/
#define UPPER 300 /% upper limit =/
#define STEP 20 /% step size »/

/# print Fahrenheit-Celsius table »/
main()

{

int fahr;

for (fahr = LOWER; fahr <= UPPER; fahr = fahr + STEP)
printf("%34 %6.1£\n", fahr, (5.0/9.0)+(fahr-32));
}

The quantities LOWER, UPPER and STEP are symbolic constants, not variables,
so they do not appear in declarations. Symbolic constant names are convention-
ally written in upper case so they can be readily distinguished from lower case
variable names. Notice that there is no semicolon at the end of a #define
line.

1.5 Character Input and Output

We are now going to consider a family of related programs for processing
character data. You will find that many programs are just expanded versions of
the prototypes that we discuss here.

The model of input and output supported by the standard library is very sim-
ple. Text input or output, regardless of where it originates or where it goes to,
is dealt with as streams of characters. A fext stream is a sequence of charac-
ters divided into lines; each line consists of zero or more characters followed by
a newline character. It is the responsibility of the library to make each input or
output stream conform to this model; the C programmer using the library need
not worry about how lines are represented outside the program.

The standard library provides several functions for reading or writing one
character at a time, of which getchar and putchar are the simplest. Each
time it is called, getchar reads the next input character from a text stream
and returns that as its value. That is, after

¢ = getchar()

the variable ¢ contains the next character of input. The characters normally
come from the keyboard; input from files is discussed in Chapter 7.
The function putchar prints a character each time it is called:

putchar(c)

prints the contents of the integer variable ¢ as a character, usually on the
screen. Calls to putchar and printf may be interleaved; the output will
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appear in the order in which the calls are made.

1.5.1 File Copying

Given getchar and putchar, you can write a surprising amount of useful
code without knowing anything more about input and output. The simplest
example is a program that copies its input to its output one character at a time:

read a character

while (character is not end-of-file indicator)
output the character just read
read a character

Converting this into C gives

#include <stdio.h>

/% copy input to output; 1st version »/
main()
{

int c;

¢ = getchar();
while (c != EOF) {
putchar(c);
¢ = getchar();

}

The relational operator |= means “not equal to.”

What appears to be a character on the keyboard or screen is of course, like
everything else, stored internally just as a bit pattern. The type char is specifi-
cally meant for storing such character data, but any integer type can be used.
We used int for a subtle but important reason.

The problem is distinguishing the end of the input from valid data. The
solution is that getchar returns a distinctive value when there is no more
input, a value that cannot be confused with any real character. This value is
called EOF, for “end of file.” We must declare ¢ to be a type big enough to
hold any value that getchar returns. We can’t use char since ¢ must be big
enough to hold EOF in addition to any possible char. Therefore we use int.

EOF is an integer defined in <stdio.h>, but the specific numeric value
doesn’t matter as long as it is not the same as any char value. By using the
symbolic constant, we are assured that nothing in the program depends on the
specific numeric value.

The program for copying would be written more concisely by experlcnccd C
programmers. In C, any assignment, such as

c = getchar()
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is an expression and has a value, which is the value of the left hand side after
the assignment. This means that an assignment can appear as part of a larger
expression. If the assignment of a character to c is put inside the test part of a
while loop, the copy program can be written this way:

#include <stdio.h>

/% copy input to output; 2nd version »/
main()
{

int cj

while ((c = getchar()) != EOF)
putchar(c);
}

The while gets a character, assigns it to c, and then tests whether the charac-
ter was the end-of-file signal. If it was not, the body of the while is executed,
printing the character. The while then repeats. When the end of the input is
finally reached, the while terminates and so does main.

This version centralizes the input—there is now only one reference to
getchar—and shrinks the program. The resulting program is more compact,
and, once the idiom is mastered, easier to read. You’ll see this style often. (It’s
possible to get carried away and create impenetrable code, however, a tendency
that we will try to curb.)

The parentheses around the assignment within the condition are necessary.
The precedence of 1= is higher than that of =, which means that in the absence
of parentheses the relational test != would be done before the assignment =. So
the statement

c = getchar() != EOF
is equivalent to
¢ = (getchar() != EOF)

This has the undesired effect of setting ¢ to 0 or 1, depending on whether or not
the call of getchar encountered end of file. (More on this in Chapter 2.)

Exercise 1-6. Verify that the expression getchar() !=EOFisQor 1. O

Exercise 1-7. Write a program to print the value of EOF. O

1.56.2 Character Counting

The next program counts characters; it is similar to the copy program.
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#include <stdio.h>

/% count characters in input; 1st version */

main()
{
long nc;
nc = 0;
while (getchar() != EOF)

+4nc;
printf("%1ld\n", nc);
}

The statement

+4ncC;

presents a new operator, ++, which means increment by one. You could instead
write nc = nc+1 but ++nc is more concise and often more efficient. There is a
corresponding operator -- to decrement by 1. The operators ++ and -- can be
either prefix operators (++nc) or postfix (nc++); these two forms have dif-
ferent values in expressions, as will be shown in Chapter 2, but ++nc and nc++
both increment nc. For the moment we will stick to the prefix form.

The character counting program accumulates its count in a long variable
instead of an int. long integers are at least 32 bits. Although on some
machines, int and long are the same size, on others an int is 16 bits, with a
maximum value of 32767, and it would take relatively little input to overflow an
int counter. The conversion specification %1d tells printf that the
corresponding argument is a long integer.

It may be possible to cope with even bigger numbers by using a double
(double precision float). We will also use a for statement instead of a
while, to illustrate another way to write the loop.

#include <stdio.h>

/% count characters in input; 2nd version »/
main()
{

double nc;

for (nc = 0; getchar() != EOF; ++nc)

o

]
printf("%.0f\n", nc);
}

printf uses %f for both £loat and double; %.0f suppresses printing of the
decimal point and the fraction part, which is zero.

The body of this for loop is empty, because all of the work is done in the
test and increment parts. But the grammatical rules of C require that a for
statement have a body. The isolated semicolon, called a null statement, is there



SECTION 1.5 CHARACTER INPUT AND OUTPUT 19

to satisfy that requirement. We put it on a separate line to make it visible.

Before we leave the character counting program, observe that if the input
contains no characters, the while or for test fails on the very first call to
getchar, and the program produces zero, the right answer. This is important.
One of the nice things about while and for is that they test at the top of the
loop, before proceeding with the body. If there is nothing to do, nothing is done,
even if that means never going through the loop body. Programs should act
intelligently when given zero-length input. The while and for statements
help ensure that programs do reasonable things with boundary conditions.

1.56.3 Line Counting

The next program counts input lines. As we mentioned above, the standard
library ensures that an input text stream appears as a sequence of lines, each
terminated by a newline. Hence, counting lines is just counting newlines:

#include <stdio.h>

/% count lines in input »/
main()

{

int ¢, nl;

nl = 0;
while ((c = getchar()) != EOF)
if (¢ == ‘\n’)
++nl;
printf("%¥d\n", nl);
}

The body of the while now consists of an if, which in turn controls the
increment ++nl. The if statement tests the parenthesized condition, and if the
condition is true, executes the statement (or group of statements in braces) that
follows. We have again indented to show what is controlled by what.

The double equals sign == is the C notation for “is equal to” (like Pascal’s
single = or Fortran’s .EQ.). This symbol is used to distinguish the equality test
from the single = that C uses for assignment. A word of caution: newcomers to
C occasionally write = when they mean ==. As we will see in Chapter 2, the
result is usually a legal expression, so you will get no warning.

A character written between single quotes represents an integer value equal
to the numerical value of the character in the machine’s character set. This is
called a character constant, although it is just another way to write a small
integer. So, for example, ‘A’ is a character constant; in the ASCII character
set its value is 65, the internal representation of the character A. Of course ‘A’
is to be preferred over 65: its meaning is obvious, and it is independent of a par-
ticular character set.

The escape sequences used in string constants are also legal in character
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constants, so “\n’ stands for the value of the newline character, which is 10 in
ASCII. You should note carefully that ‘\n’ is a single character, and in
expressions is just an integer; on the other hand, "\n" is a string constant that
happens to contain only one character. The topic of strings versus characters is
discussed further in Chapter 2.

Exercise 1-8. Write a program to count blanks, tabs, and newlines. O

Exercise 1-9. Write a program to copy‘ its input to its output, replacing each
string of one or more blanks by a single blank. O

Exercise 1-10. Write a program to copy its input to its output, replacing each
tab by \t, each backspace by \b, and each backslash by \\. This makes tabs
and backspaces visible in an unambiguous way. O

1.5.4 Word Counting

The fourth in our series of useful programs counts lines, words, and charac-
ters, with the loose definition that a word is any sequence of characters that
does not contain a blank, tab or newline. This is a bare-bones version of the
UNIX program wc.

#include <stdio.h>

#define IN 1 /% inside a word =/
#define OUT 0 /% outside a word */

/% count lines, words, and characters in input */
main()

{

int ¢, nl, nw, nc, state;

state = OUT;
nl = nw = n¢c = 0;
while ((c¢ = getchar()) I!= EOF) {
++nc;
if (¢ == ‘\n’)
++nl;
if (¢ == N
state = OUT;
else if (state == OUT) {
state = IN;
+40W;

4 ’

}
}
printf("%d %d %d\n", nl, nw, nc);
}

Every time the program encounters the first character of a word, it counts
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one more word. The variable state records whether the program is currently
in a word or not; initially it is “not in a word,” which is assigned the value OUT.
We prefer the symbolic constants IN and OUT to the literal values 1 and 0
because they make the program more readable. In a program as tiny as this, it
makes little difference, but in larger programs, the increase in clarity is well
worth the modest extra effort to write it this way from the beginning. You’ll
also find that it’s easier to make extensive changes in programs where magic
numbers appear only as symbolic constants.
The line

nl = nw = nc = 0;

sets all three variables to zero. This is not a special case, but a consequence of
the fact that an assignment is an expression with a value and assignments asso-
ciate from right to left. It’s as if we had written

nl = (nw = (nc = 0));

The operator | | means OR, so the line

if (¢ == * '
says “if c is a blank or c is a newline or ¢ is a tab”. (Recall that the escape
sequence \t is a visible representation of the tab character.) There is a
corresponding operator && for AND; its precedence is just higher than i1i.
Expressions connected by && or ii are evaluated left to right, and it is
guaranteed that evaluation will stop as soon as the truth or falsehood is known.
If ¢ is a blank, there is no need to test whether it is a newline or tab, so these
tests are not made. This isn’t particularly important here, but is significant in
more complicated situations, as we will soon see.

The example also shows an else, which specifies an alternative action if the

condition part of an if statement is false. The general form is

if (expression)
Statement |
else
statement ,

One and only one of the two statements associated with an if-else is per-
formed. If the expression is true, statement, is executed; if not, statement, is
executed. Each statement can be a single statement or several in braces. In the
word count program, the one after the else is an if that controls two state-
ments in braces.

Exercise 1-11. How would you test the word count program? What kinds of
input are most likely to uncover bugs if there are any? O

Exercise 1-12. Write a program that prints its input one word per line. O
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1.6 Arrays

Let us write a program to count the number of occurrences of each digit, of
white space characters (blank, tab, newline), and of all other characters. This
is artificial, but it permits us to illustrate several aspects of C in one program.

There are twelve categories of input, so it is convenient to use an array to
hold the number of occurrences of each digit, rather than ten individual vari-
ables. Here is one version of the program:

#include <stdio.h>

/% count digits, white space, others »/
main()
{

int ¢, i, nwhite, nother;

int ndigit[10];

nwhite = nother = 0;
for (i 0; i < 10; ++1i)
ndigit[i] = 0;

while ((c = getchar()) != EOF)
if (¢ >= ‘0’ && ¢c <= ’9’)
++ndigit[c-’0"];
else if (c == * * |l ¢ == ’\n’ {i1 ¢ == "\t’)
++nwhite;
else
++nother;

printf("digits =");

for (i = 0; i < 10; ++i)
printf(" %d", ndigit[i]);

printf(", white space = %d, other = %d\n",
nwhite, nother);

}

The output of this program on itself is
digits = 93 0000000 1, white space = 123, other = 345

The declaration
int ndigit[10];

declares ndigit to be an array of 10 integers. Array subscripts always start at
zero in C, so the elements are ndigit[0], ndigit[1], .., ndigit[9]. This
is reflected in the for loops that initialize and print the array.

A subscript can be any integer expression, which includes integer variables
like i, and integer constants.

This particular program relies on the properties of the character representa-
tion of the digits. For example, the test
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if (¢ >= ‘0’ && ¢ <= ‘9’) ..

determines whether the character in c is a digit. If it is, the numeric value of
that digit is

c - '0’

This works only if 0%, “1/, ..., Y9’ have consecutive increasing values. For-
tunately, this is true for all character sets.

By definition, chars are just small integers, so char variables and constants
are identical to ints in arithmetic expressions. This is natural and convenient;
for example, c-°0’ is an integer expression with a value between 0 and 9
corresponding to the character ‘0 to 9’ stored in ¢, and is thus a valid sub-
script for the array ndigit.

The decision as to whether a character is a digit, white space, or something
else is made with the sequence

if (c >= ‘0’ && ¢ <= ’'9’)
++ndigit[c-0"];

else if (c ==’ * |l ¢ == “\n’ |l ¢ == "\t’)
++nwhite;

else
++nother;

The pattern

if (condition,)
statement |

else if (condition,)
statement ,

else
Statement,

occurs frequently in programs as a way to express a multi-way decision. The
conditions are evaluated in order from the top until some condition is satisfied;
at that point the corresponding statement part is executed, and the entire con-
struction is finished. (Any statement can be several statements enclosed in
braces.) If none of the conditions is satisfied, the statement after the final
else is executed if it is present. If the final else and statement are omitted,
as in the word count program, no action takes place. There can be any number
of

else if (condition)
statement

groups between the initial if and the final else.

As a matter of style, it is advisable to format this construction as we have
shown; if each if were indented past the previous else, a long sequence of
decisions would march off the right side of the page.



24 A TUTORIAL INTRODUCTION CHAPTER 1

The switch statement, to be discussed in Chapter 3, provides another way
to write a multi-way branch that is particularly suitable when the condition is
whether some integer or character expression matches one of a set of constants.
For contrast, we will present a switch version of this program in Section 3.4.

Exercise 1-13. Write a program to print a histogram of the lengths of words in
its input. It is easy to draw the histogram with the bars horizontal; a vertical
orientation is more challenging. O

Exercise 1-14. Write a program to print a histogram of the frequencies of dif-
ferent characters in its input. O

1.7 Functions

In C, a function is equivalent to a subroutine or function in Fortran, or a
procedure or function in Pascal. A function provides a convenient way to
encapsulate some computation, which can then be used without worrying about
its implementation. With properly designed functions, it is possible to ignore
how a job is done; knowing what is done is sufficient. C makes the use of func-
tions easy, convenient and efficient; you will often see a short function defined
and called only once, just because it clarifies some piece of code.

So far we have used only functions like printf, getchar, and putchar
that have been provided for us; now it’s time to write a few of our own. Since C
has no exponentiation operator like the #+ of Fortran, let us illustrate the
mechanics of function definition by writing a function power (m,n) to raise an
integer m to a positive integer power n. That is, the value of power(2,5) is
32. This function is not a practical exponentiation routine, since it handles only
positive powers of small integers, but it’s good enough for illustration. (The
standard library contains a function pow(x,y) that computes xY.)

Here is the function power and a main program to exercise it, so you can
see the whole structure at once.

#include <stdio.h>
int power(int m, int n);

/» test power function »/
main()
{

int i;

for (i = 0; i < 10; ++1i)
printf("%d %d %d\n", i, power(2,i), power(-3,i));
return 0;
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/% power: raise base to n-th power; n >= 0 */
int power(int base, int n)

{
int i, p;
p=1;
for (i = 1; i <= n; ++1i)
P = p * base;
return p;
}

A function definition has this form:

return-type function-name (parameter declarations, if any)

declarations
statements
}

Function definitions can appear in any order, and in one source file or several,
although no function can be split between files. If the source program appears
in several files, you may have to say more to compile and load it than if it all
appears in one, but that is an operating system matter, not a language attribute.
For the moment, we will assume that both functions are in the same file, so
whatever you have learned about running C programs will still work.

The function power is called twice by main, in the line

printf("%d %4 %d\n", i, power(2,i), power(-3,i));

Each call passes two arguments to power, which each time returns an integer
to be formatted and printed. In an expression, power (2,i) is an integer just
as 2 and i are. (Not all functions produce an integer value; we will take this
up in Chapter 4.)

The first line of power itself,

int power(int base, int n)

declares the parameter types and names, and the type of the result that the
function returns. The names used by power for its parameters are local to
power, and are not visible to any other function: other routines can use the
same names without conflict. This is also true of the variables i and p: the i in
power is unrelated to the i in main.

We will generally use parameter for a variable named in the parenthesized
list in a function definition, and argument for the value used in a call of the
function. The terms formal argument and actual argument are sometimes used
for the same distinction.

The value that power computes is returned to main by the return state-
ment. Any expression may follow return:

return expression;
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A function need not return a value; a return statement with no expression
causes control, but no useful value, to be returned to the caller, as does *“falling
off the end” of a function by reaching the terminating right brace. And the cal-
ling function can ignore a value returned by a function.

You may have noticed that there is a return statement at the end of main.
Since main is a function like any other, it may return a value to its caller,
which is in effect the environment in which the program was executed. Typi-
cally, a return value of zero implies normal termination; non-zero values signal
unusual or erroneous termination conditions. In the interests of simplicity, we
have omitted return statements from our main functions up to this point, but
we will include them hereafter, as a reminder that programs should return
status to their environment.

The declaration

int power(int m, int n);

just before main says that power is a function that expects two int arguments
and returns an int. This declaration, which is called a function prototype, has
to agree with the definition and uses of power. It is an error if the definition
of a function or any uses of it do not agree with its prototype.

Parameter names need not agree. Indeed, parameter names are optional in a
function prototype, so for the prototype we could have written

int power(int, int);
Well-chosen names are good documentation, however, so we will often use them.

A note of history: The biggest change between ANSI C and earlier versions
is how functions are declared and defined. In the original definition of C, the
power function would have been written like this:

/% power: raise base to n-th power; n >= 0 »/
/% (old-style version) »/

power (base, n)

int base, n;

{
int i, p;
p=1;
for (i = 1; 1 <= n; ++1i)
P = p * base;
return p;
}

The parameters are named between the parentheses, and their types are
declared before the opening left brace; undeclared parameters are taken as int.
(The body of the function is the same as before.)

The declaration of power at the beginning of the program would have
looked like this:
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int power();

No parameter list was permitted, so the compiler could not readily check that
power was being called correctly. Indeed, since by default power would have
been assumed to return an int, the entire declaration might well have been
omitted.

The new syntax of function prototypes makes it much easier for a compiler
to detect errors in the number of arguments or their types. The old style of
declaration and definition still works in ANSI C, at least for a transition period,
but we strongly recommend that you use the new form when you have a com-
piler that supports it.

Exercise 1-15. Rewrite the temperature conversion program of Section 1.2 to
use a function for conversion. O

1.8 Arguments—Call by Value

One aspect of C functions may be unfamiliar to programmers who are used
to some other languages, particularly Fortran. In C, all function arguments are
passed “by value.” This means that the called function is given the values of its
arguments in temporary variables rather than the originals. This leads to some
different properties than are seen with “call by reference” languages like For-
tran or with var parameters in Pascal, in which the called routine has access to
the original argument, not a local copy.

The main distinction is that in C the called function cannot directly alter a
variable in the calling function; it can only alter its private, temporary copy.

Call by value is an asset, however, not a liability. It usually leads to more
compact programs with fewer extraneous variables, because parameters can be
treated as conveniently initialized local variables in the called routine. For
example, here is a version of power that makes use of this property.

/% power: raise base to n-th power; n>=0; version 2 »/
int power(int base, int n)

{
int p;
for (p=1; n > 0; ~--n)
P = p * base;
return p;
}

The parameter n is used as a temporary variable, and is counted down (a for
loop that runs backwards) until it becomes zero; there is no longer a need for
the variable i. Whatever is done to n inside power has no effect on the argu-
ment that power was originally called with.

When necessary, it is possible to arrange for a function to modify a variable
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in a calling routine. The caller must provide the address of the variable to be
set (technically a pointer to the variable), and the called function must declare
the parameter to be a pointer and access the variable indirectly through it. We
will cover pointers in Chapter S.

The story is different for arrays. When the name of an array is used as an
argument, the value passed to the function is the location or address of the
beginning of the array—there is no copying of array elements. By subscripting
this value, the function can access and alter any element of the array. This is
the topic of the next section.

1.9 Character Arrays

The most common type of array in C is the array of characters. To illus-
trate the use of character arrays and functions to manipulate them, let’s write a
program that reads a set of text lines and prints the longest. The outline is sim-
ple enough:

while (there’s another line)
if (it’s longer than the previous longest)
save it ‘
save its length
print longest line

This outline makes it clear that the program divides naturally into pieces. One
piece gets a new line, another tests it, another saves it, and the rest controls the
process.

Since things divide so nicely, it would be well to write them that way too.
Accordingly, let us first write a separate function getline to fetch the next
line of input. We will try to make the function useful in other contexts. At the
minimum, getline has to return a signal about possible end of file; a more
useful design would be to return the length of the line, or zero if end of file is
encountered. Zero is an acceptable end-of-file return because it is never a valid
line length. Every text line has at least one character; even a line containing
only a newline has length 1.

When we find a line that is longer than the previous longest line, it must be
saved somewhere. This suggests a second function, copy, to copy the new line
to a safe place.

Finally, we need a main program to control getline and copy. Here is
the result.
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#include <stdio.h>
#define MAXLINE 1000 /% maximum input line size */

int getline(char line[],kint maxline);
void copy(char tol[], char from[]);

/+ print longest input line #/

main()

{
int len; /% current line length »/
int max; /% maximum length seen so far */
char line[MAXLINE]; /% current input line */

char longest[MAXLINE]; /* longest line saved here »*/

max = 03
while ((len = getline(line, MAXLINE)) > 0)
if (len > max) {
max = len;
copy(longest, line);
}
if (max > 0) /% there was a line %/
printf("%s", longest);
return 0;

/% getline: read a line into s, return length #/
int getline(char s[], int lim)

{
int ¢, i;
for (i=0; i<lim-1 && (c=getchar())!=EOF && cl=’\n’; ++i)
s[i] = ¢;
if (¢ == ‘\n’) {
s[i] = c;
++1;
}
s[i] = ’\0’;
return i;
}

/% copy: copy ’‘from’ into ‘to’; assume to is big enough #*/
void copy(char to[], char from[])
{

int i;

i=0;
while ((to[i] = from[i]) 1= ’\0’)
++1;
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The functions getline and copy are declared at the beginning of the pro-
gram, which we assume is contained in one file.

main and getline communicate through a pair of arguments and a
returned value. In getline, the arguments are declared by the line

int getline(char s[], int 1lim)

which specifies that the first argument, s, is an array, and the second, 1im, is
an integer. The purpose of supplying the size of an array in a declaration is to
set aside storage. The length of the array s is not necessary in getline since
its size is set in main. getline uses return to send a value back to the
caller, just as the function power did. This line also declares that getiine
returns an int; since int is the default return type, it could be omitted.

Some functions return a useful value; others, like copy, are used only for
their effect and return no value. The return type of copy is void, which states
explicitly that no value is returned.

getline puts the character *\0* (the null character, whose value is zero)
at the end of the array it is creating, to mark the end of the string of characters.
This convention is also used by the C language: when a string constant like

"hello\n"

appears in a C program, it is stored as an array of characters containing the
characters of the string and terminated with a “\0’ to mark the end.

Ihlelllllol\nl\OJ

The %s format specification in printf expects the corresponding argument to
be a string represented in this form. copy also relies on the fact that its input
argument is terminated by ‘\0’, and it copies this character into the output
argument. (All of this implies that *\0" is not a part of normal text.)

It is worth mentioning in passing that even a program as small as this one
presents some sticky design problems. For example, what should main do if it
encounters a line which is bigger than its limit? getline works safely, in that
it stops collecting when the array is full, even if no newline has been seen. By
testing the length and the last character returned, main can determine whether
the line was too long, and then cope as it wishes. In the interests of brevity, we
have ignored the issue.

There is no way for a user of getline to know in advance how long an
input line might be, so getline checks for overflow. On the other hand, the
user of copy already knows (or can find out) how big the strings are, so we
have chosen not to add error checking to it.

Exercise 1-16. Revise the main routine of the longest-line program so it will
correctly print the length of arbitrarily long input lines, and as much as possible
of the text. O
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Exercise 1-17. Write a program to print all input lines that are longer than 80
characters. O

Exercise 1-18. Write a program to remove trailing blanks and tabs from each
line of input, and to delete entirely blank lines. O

Exercise 1-19. Write a function reverse(s) that reverses the character
string s. Use it to write a program that reverses its input a line at a time. O

1.10 External Variables and Scope

The variables in main, such as 1ine, longest, etc., are private or local to
main. Because they are declared within main, no other function can have
direct access to them. The same is true of the variables in other functions; for
example, the variable i in getline is unrelated to the i in copy. Each local
variable in a function comes into existence only when the function is called, and
disappears when the function is exited. This is why such variables are usually
known as automatic variables, following terminology in other languages. We
will use the term automatic henceforth to refer to these local variables.
(Chapter 4 discusses the static storage class, in which local variables do
retain their values between calls.)

Because automatic variables come and go with function invocation, they do
not retain their values from one call to the next, and must be explicitly set upon
each entry. If they are not set, they will contain garbage.

As an alternative to automatic variables, it is possible to define variables that
are external to all functions, that is, variables that can be accessed by name by
any function. (This mechanism is rather like Fortran COMMON or Pascal vari-
ables declared in the outermost block.) Because external variables are globally
accessible, they can be used instead of argument lists to communicate data
between functions. Furthermore, because external variables remain in existence
permanently, rather than appearing and disappearing as functions are called and
exited, they retain their values even after the functions that set them have
returned.

An external variable must be defined, exactly once, outside of any function;
this sets aside storage for it. The variable must also be declared in each func-
tion that wants to access it; this states the type of the variable. The declaration
may be an explicit extern statement or may be implicit from context. To
make the discussion concrete, let us rewrite the longest-line program with line,
longest, and max as external variables. This requires changing the calls,
declarations, and bodies of all three functions.
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#include <stdio.h>
#define MAXLINE 1000 /% maximum input line size #*/

int max; /% maximum length seen so far »/
char line[MAXLINE]; /+ current input line */
char longest[MAXLINE]; /* longest line saved here #/

int getline(void);
void copy(void);

/+ print longest input line; specialized version %/
main()
{

int len;

extern int max;

extern char longest[];

max = 03
while ((len = getline()) > 0)
if (len > max) {
max = len;
copy();
}
if (max > 0) /# there was a line »/
printf("%s", longest);
return 0;

/% getline: specialized version »/
int getline(void)
{

int ¢, 1i;

extern char line(];

for (i = 0; i < MAXLINE-1
&8 (c=getchar()) != EOF && c I= ’'\n’; ++i)
line[i] = c¢;
if (¢ == ’‘\n’) {
line[i] = c¢;
+41;
}
line[i] = ‘\0’;
return i;
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/% copy: specialized version */
void copy(void)

{
int i;
extern char line[], longest([];
i= 03
while ((longest[i] = 1line[i]) != “\0*)
++1;
}

The external variables in main, getline, and copy are defined by the
first lines of the example above, which state their type and cause storage to be
allocated for them. Syntactically, external definitions are just like definitions of
local variables, but since they occur outside of functions, the variables are exter-
nal. Before a function can use an external variable, the name of the variable
must be made known to the function. One way to do this is to write an
extern declaration in the function; the declaration is the same as before except
for the added keyword extern.

In certain circumstances, the extern declaration can be omitted. If the
definition of an external variable occurs in the source file before its use in a par-
ticular function, then there is no need for an extern declaration in the func-
tion. The extern declarations in main, getline and copy are thus redun-
dant. In fact, common practice is to place definitions of all external variables at
the beginning of the source file, and then omit all extern declarations.

If the program is in several source files, and a variable is defined in filel
and used in file2 and file3, then extern declarations are needed in file2 and
file3 to connect the occurrences of the variable. The usual practice is to collect
extern declarations of variables and functions in a separate file, historically
called a header, that is included by #include at the front of each source file.
The suffix .h is conventional for header names. The functions of the standard
library, for example, are declared in headers like <stdio.h>. This topic is
discussed at length in Chapter 4, and the library itself in Chapter 7 and Appen-
dix B.

Since the specialized versions of getline and copy have no arguments,
logic would suggest that their prototypes at the beginning of the file should be
getline() and copy(). But for compatibility with older C programs the
standard takes an empty list as an old-style declaration, and turns off all argu-
ment list checking; the word void must be used for an explicitly empty list.
We will discuss this further in Chapter 4.

You should note that we are using the words definition and declaration care-
fully when we refer to external variables in this section. “Definition” refers to
the place where the variable is created or assigned storage; “declaration refers
to places where the nature of the variable is stated but no storage is allocated.

By the way, there is a tendency to make everything in sight an extern vari-
able because it appears to simplify communications—argument lists are short
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and variables are always there when you want them. But external variables are
always there even when you don’t want them. Relying too heavily on external
variables is fraught with peril since it leads to programs whose data connections
are not at all obvious—variables can be changed in unexpected and even inad-
vertent ways, and the program is hard to modify. The second version of the
longest-line program is inferior to the first, partly for these reasons, and partly
because it destroys the generality of two useful functions by wiring into them
the names of the variables they manipulate.

At this point we have covered what might be called the conventional core of
C. With this handful of building blocks, it’s possible to write useful programs
of considerable size, and it would probably be a good idea if you paused long
enough to do so. These exercises suggest programs of somewhat greater com-
plexity than the ones earlier in this chapter.

Exercise 1-20. Write a program detab that replaces tabs in the input with the
proper number of blanks to space to the next tab stop. Assume a fixed set of
tab stops, say every n columns. Should n be a variable or a symbolic parame-
ter? O

Exercise 1-21. Write a program entab that replaces strings of blanks by the
minimum number of tabs and blanks to achieve the same spacing. Use the
same tab stops as for detab. When either a tab or a single blank would suffice
to reach a tab stop, which should be given preference? O

Exercise 1-22. Write a program to “fold” long input lines into two or more
shorter lines after the last non-blank character that occurs before the n-th
column of input. Make sure your program does something intelligent with very
long lines, and if there are no blanks or tabs before the specified column. O

Exercise 1-23. Write a program to remove all comments from a C program.
Don’t forget to handle quoted strings and character constants properly. C com-
ments do not nest. O

Exercise 1-24. Write a program to check a C program for rudimentary syntax
errors like unbalanced parentheses, brackets and braces. Don’t forget about
quotes, both single and double, escape sequences, and comments. (This pro-
gram is hard if you do it in full generality.) O



CHAPTER 2. Types, Operators, and Expressions

Variables and constants are the basic data objects manipulated in a program.
Declarations list the variables to be used, and state what type they have and
perhaps what their initial values are. Operators specify what is to be done to
them. Expressions combine variables and constants to produce new values. The
type of an object determines the set of values it can have and what operations
can be performed on it. These building blocks are the topics of this chapter.

The ANSI standard has made many small changes and additions to basic
types and expressions. There are now signed and unsigned forms of all
integer types, and notations for unsigned constants and hexadecimal character
constants. Floating-point operations may be done in single precision; there is
also a 1long double type for extended precision. String constants may be con-
catenated at compile time. Enumerations have become part of the language,
formalizing a feature of long standing. Objects may be declared const, which
prevents them from being changed. The rules for automatic coercions among
arithmetic types have been augmented to handle the richer set of types.

2.1 Variable Names

Although we didn’t say so in Chapter 1, there are some restrictions on the
names of variables and symbolic constants. Names are made up of letters and
digits; the first character must be a letter. The underscore “_” counts as a
letter; it is sometimes useful for improving the readability of long variable
names. Don’t begin variable names with underscore, however, since library rou-
tines often use such names. Upper case and lower case letters are distinct, so x
and X are two different names. Traditional C practice is to use lower case for
variable names, and all upper case for symbolic constants.

At least the first 31 characters of an internal name are significant. For
function names and external variables, the number may be less than 31, because
external names may be used by assemblers and loaders over which the language
has no control. For external names, the standard guarantees uniqueness only
for 6 characters and a single case. Keywords like if, else, int, float, etc.,

35
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are reserved: you can’t use them as variable names. They must be in lower
case.

It’s wise to choose variable names that are related to the purpose of the vari-
able, and that are unlikely to get mixed up typographically. We tend to use
short names for local variables, especially loop indices, and longer names for
external variables.

2.2 Data Types and Sizes

There are only a few basic data types in C:

char a single byte, capable of holding one character
in the local character set.
int an integer, typically reflecting the natural size

} of integers on the host machine.
float single-precision floating point.
double double-precision floating point.

In addition, there are a number of qualifiers that can be applied to these
basic types. short and long apply to integers:

short int sh;
long int counter;

The word int can be omitted in such declarations, and typically is. '

The intent is that short and long should provide different lengths of
integers where practical; int will normally be the natural size for a particular
machine. short is often 16 bits, long 32 bits, and int either 16 or 32 bits.
Each compiler is free to choose appropriate sizes for its own hardware, subject
only to the restriction that shorts and ints are at least 16 bits, longs are at
least 32 bits, and short is no longer than int, which is no longer than long.

The qualifier signed or unsigned may be applied to char or any integer.
unsigned numbers are always positive or zero, and obey the laws of arithmetic
modulo 2", where n is the number of bits in the type. So, for instance, if chars
are 8 bits, unsigned char variables have values between 0 and 255, while
signed chars have values between —128 and 127 (in a two’s complement
machine). Whether plain chars are signed or unsigned is machine-dependent,
but printable characters are always positive.

The type 1long double specifies extended-precision floating point. As with
integers, the sizes of floating-point objects are implementation-defined; £loat,
double and long double could represent one, two or three distinct sizes.

The standard headers <1imits.h> and <float.h> contain symbolic con-
stants for all of these sizes, along with other properties of the machine and com-
piler. These are discussed in Appendix B.

Exercise 2-1. Write a program to determine the ranges of char, short, int,
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and long variables, both signed and unsigned, by printing appropriate
values from standard headers and by direct computation. Harder if you com-
pute them: determine the ranges of the various floating-point types. O

2.3 Constants

An integer constant like 1234 is an int. A long constant is written with a
terminal 1 (ell) or L, as in 123456789L; an integer too big to fit into an int
will also be taken as a 1long. Unsigned constants are written with a terminal u
or U, and the suffix ul or UL indicates unsigned long.

Floating-point constants contain a decimal point (123.4) or an exponent
(1e-2) or both; their type is double, unless suffixed. The suffixes £ or F indi-
cate a float constant; 1 or L indicate a long double.

The value of an integer can be specified in octal or hexadecimal instead of
decimal. A leading 0 (zero) on an integer constant means octal; a leading 0x
or 0X means hexadecimal. For example, decimal 31 can be written as 037 in
octal and 0x1f or OX1F in hex. Octal and hexadecimal constants may also be
followed by L to make them long and U to make them unsigned: 0XFUL is
an unsigned long constant with value 15 decimal.

A character constant is an integer, written as one character within single
quotes, such as *x’. The value of a character constant is the numeric value of
the character in the machine’s character set. For example, in the ASCII charac-
ter set the character constant ‘0’ has the value 48, which is unrelated to the
numeric value 0. If we write 0’ instead of a numeric value like 48 that
depends on character set, the program is independent of the particular value and
easier to read. Character constants participate in numeric operations just as
any other integers, although they are most often used in comparisons with other
characters.

Certain characters can be represented in character and string constants by
escape sequences like \n (newline); these sequences look like two characters,
but represent only one. In addition, an arbitrary byte-sized bit pattern can be
specified by

’\ooo’
where ooo is one to three octal digits (0...7) or by
’\xhh’

where hh is one or more hexadecimal digits (0...9, a...f, A...F). So we might
write

#define VTAB ‘\013’ /% ASCII vertical tab #/
#define BELL ‘\007° /% ASCII bell character »/

or, in hexadecimal,
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#define VTAB ’‘\xb’ /% ASCII vertical tab #/
#define BELL ‘\x7’ /% ASCII bell character =/

The complete set of escape sequences is

\a alert (bell) character \\ backslash

\b backspace \? question mark

\f formfeed \’ single quote

\n newline \" double quote

\r carriage return \ooo  octal number

\t horizontal tab \xhh  hexadecimal number
\v vertical tab

The character constant *\0’ represents the character with value zero, the
null character. ‘\0’ is often written instead of 0 to emphasize the character
nature of some expression, but the numeric value is just 0.

A constant expression is an expression that involves only constants. Such
expressions may be evaluated during compilation rather than run-time, and
accordingly may be used in any place that a constant can occur, as in

#define MAXLINE 1000
char line[MAXLINE+1];

or

#define LEAP 1 /% in leap years +/
int days[31+28+LEAP+31+30+31+30+31+31+30+31+30+31];

A string constant, or string literal, is a sequence of zero or more characters
surrounded by double quotes, as in

"I am a string"

or

"" /* the empty string »/

The quotes are not part of the string, but serve only to delimit it. The same
escape sequences used in character constants apply in strings; \" represents the
double-quote character. String constants can be concatenated at compile time:

"hello," " world"

is equivalent to
"hello, world"

This is useful for splitting long strings across several source lines.

Technically, a string constant is an array of characters. The internal
representation of a string has a null character “\0’ at the end, so the physical
storage required is one more than the number of characters written between the
quotes. This representation means that there is no limit to how long a string
can be, but programs must scan a string completely to determine its length.
The standard library function strlen(s) returns the length of its character
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string argument s, excluding the terminal “\0’. Here is our version:

/+ strlen: return length of s */
int strlen(char s[])

{
int i;
i=0;
while (s[i] != ’\0’)
++1;
return i;
}

strlen and other string functions are declared in the standard header
<string.h>.

Be careful to distinguish between a character constant and a string that con-
tains a single character: ‘x’ is not the same as "x". The former is an integer,
used to produce the numeric value of the letter x in the machine’s character set.
The latter is an array of characters that contains one character (the letter x)
and a ’\0"’.

There is one other kind of constant, the enumeration constant. An
enumeration is a list of constant integer values, as in

enum boolean { NO, YES };

The first name in an enum has value 0, the next 1, and so on, unless explicit
values are specified. If not all values are specified, unspecified values continue
the progression from the last specified value, as in the second of these examples:

enum escapes { BELL = ‘\a’, BACKSPACE = ‘\b’, TAB = ’\t’,
NEWLINE = ‘\n’, VTAB = ‘\v’, RETURN = ‘\r’ };

enum months { JAN = 1, FEB, MAR, APR, MAY, JUN,
JUL, AUG, SEP, OCT, NOV, DEC };
/+ FEB is 2, MAR is 3, etc. »/

Names in different enumerations must be distinct. Values need not be distinct
in the same enumeration.

Enumerations provide a convenient way to associate constant values with
names, an alternative to #define with the advantage that the values can be
generated for you. Although variables of enum types may be declared, com-
pilers need not check that what you store in such a variable is a valid value for
the enumeration. Nevertheless, enumeration variables offer the chance of
checking and so are often better than #defines. In addition, a debugger may
be able to print values of enumeration variables in their symbolic form.
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2.4 Declarations

All variables must be declared before use, although certain declarations can
be made implicitly by context. A declaration specifies a type, and contains a
list of one or more variables of that type, as in

int 1lower, upper, step;
char ¢, 1line{1000];

Variables can be distributed among declarations in any fashion; the lists above
could equally well be written as

int 1lower;

int wupper;

int step;

char c¢;

char 1line[1000];

This latter form takes more space, but is convenient for adding a comment to
each declaration or for subsequent modifications.

A variable may also be initialized in its declaration. If the name is followed
by an equals sign and an expression, the expression serves as an initializer, as in

char esc = ‘\\’;

int i=0;

int limit = MAXLINE+1;
float eps = 1.0e-5;

If the variable in question is not automatic, the initialization is done once
only, conceptually before the program starts executing, and the initializer must
be a constant expression. An explicitly initialized automatic variable is initial-
ized each time the function or block it is in is entered; the initializer may be any
expression. External and static variables are initialized to zero by default.
Automatic variables for which there is no explicit initializer have undefined
(i.e., garbage) values.

The qualifier const can be applied to the declaration of any variable to
specify that its value will not be changed. For an array, the const qualifier
says that the elements will not be altered.

const double e

= 2.71828182845905;
const char msgl[] =

"warning: ";

The const declaration can also be used with array arguments, to indicate that
the function does not change that array:

int strlen(const char[]);

The result is implementation-defined if an attempt is made to change a const.
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2.5 Arithmetic Operators

The binary arithmetic operators are +, -, *, /, and the modulus operator %.
Integer division truncates any fractional part. The expression

X%y

produces the remainder when x is divided by y, and thus is zero when y divides
x exactly. For example, a year is a leap year if it is divisible by 4 but not by
100, except that years divisible by 400 are leap years. Therefore

if ((year ¥ 4 == 0 && year % 100 l= 0) ii year % 400 == 0)
printf("¥d is a leap year\n", year);

else
printf("%d is not a leap year\n", year);

The % operator cannot be applied to £loat or double. The direction of trun-
cation for / and the sign of the result for % are machine-dependent for negative
operands, as is the action taken on overflow or underflow.

The binary + and - operators have the same precedence, which is lower than
the precedence of #, /, and %, which is in turn lower than unary + and -.
Arithmetic operators associate left to right.

Table 2-1 at the end of this chapter summarizes precedence and associativity
for all operators.

2.6 Relational and Logical Operators

The relational operators are

> >= < <=

They all have the same precedence. Just below them in precedence are the
equality operators:

Relational operators have lower precedence than arithmetic operators, so an
expression like i < 1im-1is taken as i < (1im-1), as would be expected.

More interesting are the logical operators && and i i. Expressions connected
by && or i1 are evaluated left to right, and evaluation stops as soon as the truth
or falsehood of the result is known. Most C programs rely on these properties.
For example, here is a loop from the input function getline that we wrote in
Chapter 1:

for (i=0; i<lim-1 && (c=getchar()) != “\n’ && c |= EOF; ++i)
s[i] = c;

Before reading a new character it is necessary to check that there is room to
store it in the array s, so the test i < 1im-1 must be made first. Moreover, if
this test fails, we must not go on and read another character.
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Similarly, it would be unfortunate if ¢ were tested against EOF before
getchar is called; therefore the call and assignment must occur before the
character in c is tested.

The precedence of && is higher than that of i1, and both are lower than
relational and equality operators, so expressions like

i<lim-1 && (c = getchar()) != ‘\n’ & c != EOF

need no extra parentheses. But since the precedence of 1= is higher than
assignment, parentheses are needed in

(c = getchar()) I= ’‘\n’

to achieve the desired result of assignment to ¢ and then comparison with ‘\n”.
By definition, the numeric value of a relational or logical expression is 1 if
the relation is true, and O if the relation is false.
The unary negation operator | converts a non-zero operand into 0, and a
zero operand into 1. A common use of ! is in constructions like

if (lvalid)
rather than
if (valid == 0)

It’s hard to generalize about which form is better. Constructions like 1valid
read nicely (“if not valid””), but more complicated ones can be hard to under-
stand.

Exercise 2-2. Write a loop equivalent to the for loop above without using &&
or ii. O

2.7 Type Conversions

When an operator has operands of different types, they are converted to a
common type according to a small number of rules. In general, the only
automatic conversions are those that convert a “narrower” operand into a
“wider” one without losing information, such as converting an integer to floating
point in an expression like £ + i. Expressions that don’t make sense, like
using a f£loat as a subscript, are disallowed. Expressions that might lose infor-
mation, like assigning a longer integer type to a shorter, or a floating-point type
to an integer, may draw a warning, but they are not illegal.

A char is just a small integer, so chars may be freely used in arithmetic
expressions. This permits considerable flexibility in certain kinds of character
transformations. One is exemplified by this naive implementation of the func-
tion atoi, which converts a string of digits into its numeric equivalent.
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/+ atoi: convert s to integer »/
int atoi(char sl[1])

{
int i, n;
n=0; ‘
for (i = 0; s[i] >= ‘0’ && s[i] <= ’9’; ++i)

n=1 *n + (s[i] - ‘0%);

return n;

}

As we discussed in Chapter 1, the expression
s[i] - ‘0’

gives the numeric value of the character stored in s[i], because the values of
‘0’, *1’, etc., form a contiguous increasing sequence.

Another example of char to int conversion is the function lower, which
maps a single character to lower case for the ASCII character set. If the char-
acter is not an upper case letter, lower returns it unchanged.

/% lower: convert c to lower case; ASCII only »/
int lower(int c)

{
if (¢ >= ‘A’ && ¢c <= ’Z’)
return ¢ + ‘a’ - ‘A’;
else
return c;
}

This works for ASCII because corresponding upper case and lower case letters
are a fixed distance apart as numeric values and each alphabet is contiguous—
there is nothing but letters between A and Z. This latter observation is not true
of the EBCDIC character set, however, so this code would convert more than
just letters in EBCDIC.

The standard header <ctype.h>, described in Appendix B, defines a family
of functions that provide tests and conversions that are independent of character
set. For example, the function tolower (c) returns the lower case value of ¢
if c is upper case, so tolower is a portable replacement for the function
lower shown above. Similarly, the test

c>= ‘0" && c <= ‘9’
can be replaced by
isdigit(c)
We will use the <ctype.h> functions from now on.
There is one subtle point about the conversion of characters to integers. The
language does not specify whether variables of type char are signed or

unsigned quantities. When a char is converted to an int, can it ever produce
a negative integer? The answer varies from machine to machine, reflecting
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differences in architecture. On some machines a char whose leftmost bit is 1
will be converted to a negative integer (“sign extension”). On others, a char is
promoted to an int by adding zeros at the left end, and thus is always positive.

The definition of C guarantees that any character in the machine’s standard
printing character set will never be negative, so these characters will always be
positive quantities in expressions. But arbitrary bit patterns stored in character
variables may appear to be negative on some machines, yet positive on others.
For portability, specify signed or unsigned if non-character data is to be
stored in char variables.

Relational expressions like i > 3j and logical expressions connected by &&
and {1 are defined to have value 1 if true, and O if false. Thus the assignment

d =c>= ‘0’ &8 ¢ <= ’9’

sets d to 1 if c is a digit, and O if not. However, functions like isdigit may
return any non-zero value for true. In the test part of if, while, for, etc.,
“true” just means “non-zero,” so this makes no difference. '

Implicit arithmetic conversions work much as expected. In general, if an
operator like + or « that takes two operands (a binary operator) has operands of
different types, the “lower” type is promoted to the “higher” type before the
operation proceeds. The result is of the higher type. Section 6 of Appendix A
states the conversion rules precisely. If there are no unsigned operands, how-
ever, the following informal set of rules will suffice:

If either operand is 1ong double, convert the other to long double.
Otherwise, if either operand is double, convert the other to double.
Otherwise, if either operand is £1oat, convert the other to £loat.
Otherwise, cbnvert char and short to int.

Then, if either operand is 1ong, convert the other to long.

Notice that floats in an expression are not automatically converted to
double; this is a change from the original definition. In general, mathematical
functions like those in <math.h> will use double precision. The main reason
for using £loat is to save storage in large arrays, or, less often, to save time on
machines where double-precision arithmetic is particularly expensive.

Conversion rules are more complicated when unsigned operands are
involved. The problem is that comparisons between signed and unsigned values
are machine-dependent, because they depend on the sizes of the various integer
types. For example, suppose that int is 16 bits and long is 32 bits. Then
-1L < 1U, because 10U, which is an int, is promoted to a signed long. But
-1L > 1UL, because -1L is promoted to unsigned long and thus appears to
be a large positive number.

Conversions take place across assignments; the value of the right side is con-
verted to the type of the left, which is the type of the result.



SECTION 2.7 TYPE CONVERSIONS 45

A character is converted to an integer, either by sign extension or not, as
described above.
Longer integers are converted to shorter ones or to chars by dropping the
excess high-order bits. Thus in
int 1i;
char c;

i
c

c;
i

the value of ¢ is unchanged. This is true whether or not sign extension is
involved. Reversing the order of assignments might lose information, however.

If xis float and i is int, then x = i and i = x both cause conversions;
float to int causes truncation of any fractional part. When double is con-
verted to £loat, whether the value is rounded or truncated is implementation-
dependent.

Since an argument of a function call is an expression, type conversions also
take place when arguments are passed to functions. In the absence of a func-
tion prototype char and short become int, and float becomes double.
This is why we have declared function arguments to be int and double even
when the function is called with char and float.

Finally, explicit type conversions can be forced (‘“coerced) in any expres-
sion, with a unary operator called a cast. In the construction

( type-name) expression

the expression is converted to the named type by the conversion rules above.
The precise meaning of a cast is as if the expression were assigned to a variable
of the specified type, which is then used in place of the whole construction. For
example, the library routine sqrt expects a double argument, and will pro-
duce nonsense if inadvertently handed something else. (sqrt is declared in
<math.h>.) So if nis an integer, we can use

sqrt((double) n)

to convert the value of n to double before passing it to sqrt. Note that the
cast produces the value of n in the proper type; n itself is not altered. The cast
operator has the same high precedence as other unary operators, as summarized
in the table at the end of this chapter.

If arguments are declared by a function prototype, as they normally should
be, the declaration causes automatic coercion of any arguments when the func-
tion is called. Thus, given a function prototype for sqrt:

double sqrt(double);
the call
root2 = sqrt(2);

coerces the integer 2 into the double value 2.0 without any need for a cast.
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The standard library includes a portable implementation of a pseudo-random
number generator and a function for initializing the seed; the former illustrates
a cast:

unsigned long int next = 1;

/% rand: return pseudo-random integer on 0..32767 %/
int rand(void)
{
next = next * 1103515245 + 12345;
return (unsigned int)(next/65536) % 32768;
}

/% srand: set seed for rand() »/
void srand(unsigned int seed)

{

next = seed;

}

Exercise 2-3. Write the function htoi(s), which converts a string of hexa-
decimal digits (including an optional 0x or 0X) into its equivalent integer value.
The allowable digits are 0 through 9, a through £, and A through F. O

2.8 Increment and Decrement Operators

C provides two unusual operators for incrementing and decrementing vari-
ables. The increment operator ++ adds 1 to its operand, while the decrement
operator -- subtracts 1. We have frequently used ++ to increment variables, as
in

if (c == ‘\n’)
++nl;

The unusual aspect is that ++ and -- may be used either as prefix operators
(before the variable, as in ++n), or postfix (after the variable: n++). In both
cases, the effect is to increment n. But the expression ++n increments n before
its value is used, while n++ increments n after its value has been used. This
means that in a context where the value is being used, not just the effect, ++n
and n++ are different. If nis 5, then

X = N++;
sets x to 5, but
X = ++4n;

sets x to 6. In both cases, n becomes 6. The increment and decrement opera-
tors can only be applied to variables; an expression like (i+3j)++ is illegal.
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In a context where no value is wanted, just the incrementing effect, as in

if (¢ == ‘\n’)
nl++;

prefix and postfix are the same. But there are situations where one or the other
is specifically called for. For instance, consider the function squeeze(s,c),
which removes all occurrences of the character ¢ from the string s.

/% squeeze: delete all c from s #/
void squeeze(char s[], int c)

{
int i, j;
for (i = j = 0; s[i] 1= ’\0’; i++)
if (s[i] 1= ¢)
s[j++] = s[i];
s[j] = ’\0’;
}

Each time a non-c occurs, it is copied into the current j position, and only then
is j incremented to be ready for the next character. This is exactly equivalent
to

if (s[i] 1= ¢) {
s[j]1 = s[i];
Jj++s

}

Another example of a similar construction comes from the getline func-
tion that we wrote in Chapter 1, where we can replace

if (¢ == '\n’) {
s[i] = c;
++13

}
by the more compact

if (¢ == ’\n’)
s[i++] = ¢;

As a third example, consider the standard function strcat(s,t), which
concatenates the string t to the end of the string s. strcat assumes that
there is enough space in s to hold the combination. As we have written it,
strcat returns no value; the standard library version returns a pointer to the
resulting string.
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/% strcat: concatenate t to end of s; s must be big enough */
void strcat(char s[], char t[])

{
int i, 3j;
i=j=0;
while (s[i] != ’\0’) /# £find end of s */
i++;
while ((s[i++] = t[j++]) 1= ’\0’) /% copy t */
H
}

As each character is copied from t to s, the postfix ++ is applied to both i and
j to make sure that they are in position for the next pass through the loop.

Exercise 2-4. Write an alternate version of squeeze(s1,s2) that deletes
each character in s1 that matches any character in the string s2. O

Exercise 2-5. Write the function any(s1,s2), which returns the first location
in the string s1 where any character from the string s2 occurs, or -1 if s1
contains no characters from s2. (The standard library function strpbrk does
the same job but returns a pointer to the location.) O

2.9 Bitwise Operators

C provides six operators for bit manipulation; these may only be applied to
integral operands, that is, char, short, int, and long, whether signed or
unsigned.

& bitwise AND

i bitwise inclusive OR

~ bitwise exclusive OR

<< left shift

>> right shift

- one’s complement (unary)

The bitwise AND operator & is often used to mask off some set of bits; for
example,

n=né& 0177;

sets to zero all but the low-order 7 bits of n.

The bitwise OR operator i is used to turn bits on:

x = x | SET_ON;

sets to one in x the bits that are set to one in SET_ON.
The bitwise exclusive OR operator ~ sets a one in each bit position where its
operands have different bits, and zero where they are the same.



SECTION 2.9 BITWISE OPERATORS 49

One must distinguish the bitwise operators & and | from the logical opera-
tors && and i1, which imply left-to-right evaluation of a truth value. For
example, if x is 1 and y is 2, then x & y is zero while x && y is one.

The shift operators << and >> perform left and right shifts of their left
operand by the number of bit positions given by the right operand, which must
be positive. Thus x << 2 shifts the value of x left by two positions, filling
vacated bits with zero; this is equivalent to multiplication by 4. Right shifting
an unsigned quantity always fills vacated bits with zero. Right shifting a
signed quantity will fill with sign bits (“‘arithmetic shift”) on some machines
and with 0-bits (“logical shift”) on others.

The unary operator ~ yields the one’s complement of an integer; that is, it
converts each 1-bit into a 0-bit and vice versa. For example,

x =x & ~077

sets the last six bits of x to zero. Note that x & ~077 is independent of word
length, and is thus preferable to, for example, x & 0177700, which assumes
that x is a 16-bit quantity. The portable form involves no extra cost, since
~077 is a constant expression that can be evaluated at compile time.

As an illustration of some of the bit operators, consider the function
getbits(x,p,n) that returns the (right adjusted) n-bit field of x that begins
at position p. We assume that bit position 0 is at the right end and that n and
p are sensible positive values. For example, getbits(x,4,3) returns the
three bits in bit positions 4, 3 and 2, right adjusted.

/% getbits: get n bits from position p */
unsigned getbits(unsigned x, int p, int n)
{

return (x >> (p+1-n)) & ~(~0 << n);

}

The expression x >> (p+1-n) moves the desired field to the right end of the
word. ~0 is all 1-bits; shifting it left n bit positions with ~0<<n places zeros in
the rightmost n bits; complementing that with ~ makes a mask with ones in the
rightmost n bits.

Exercise 2-6. Write a function setbits(x,p,n,y) that returns x with the n
bits that begin at position p set to the rightmost n bits of y, leaving the other
bits unchanged. O

Exercise 2-7. Write a function invert(x,p,n) that returns x with the n bits
that begin at position p inverted (i.e., 1 changed into 0 and vice versa), leaving
the others unchanged. O

Exercise 2-8. Write a function rightrot(x,n) that returns the value of the
integer x rotated to the right by n bit positions. O
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2.10 Assignment Operators and Expressions
Expressions such as
i=13i4+2
in which the variable on the left hand side is repeated immediately on the right,
can be written in the compressed form
i+= 2
The operator += is called an assignment operator.
Most binary operators (operators like + that have a left and right operand)
have a corresponding assignment operator op =, where op is one of
v - w /% << > &~
If expr, and expr, are expressions, then
expr, op= expr,
is equivalent to
expr, = (expr,) op (expr,)
except that expr, is computed only once. Notice the parentheses around expr,:
x =y + 1
means
x=x* (y + 1)
rather than
X =x*y + 1

As an example, the function bitcount counts the number of 1-bits in its
integer argument.

/% bitcount: count 1 bits in x =/
int bitcount(unsigned x)

{
int b;
for (b =0; x 1= 0; x >>= 1)
if (x & 01)
‘ b++;
return b;
}

Declaring the argument x to be unsigned ensures that when it is right-shifted,
vacated bits will be filled with zeros, not sign bits, regardless of the machine the
program is run on.

Quite apart from conciseness, assignment operators have the advantage that
they correspond better to the way people think. We say “add 2 to i” or
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“increment i by 2,” not “take i, add 2, then put the result back in i.” Thus
the expression i += 2 is preferable to i = i+2. In addition, for a complicated
expression like

yyvallyypvip3+p4] + yypvip1+p2]] += 2

the assignment operator makes the code easier to understand, since the reader
doesn’t have to check painstakingly that two long expressions are indeed the
same, or to wonder why they’re not. And an assignment operator may even
help a compiler to produce efficient code.

We have already seen that the assignment statement has a value and can
occur in expressions; the most common example is

while ((c = getchar()) != EOF)

The other assignment operators (+=, -=, etc.) can also occur in expressions,
although this is less frequent.

In all such expressions, the type of an assignment expression is the type of its
left operand, and the value is the value after the assignment.

Exercise 2-9. In a two’s complement number system, x &= (x-1) deletes the
rightmost 1-bit in x. Explain why. Use this observation to write a faster ver-
sion of bitcount. O

2.11 Conditional Expressions

The statements

if (a > b)
Z = a;
else
Z = b;

compute in z the maximum of a and b. The conditional expression, written
with the ternary operator “?:”, provides an alternate way to write this and
similar constructions. In the expression

expr, ? expr, : expr;

the expression expr; is evaluated first. If it is non-zero (true), then the expres-
sion expr, is evaluated, and that is the value of the conditional expression.
Otherwise expr; is evaluated, and that is the value. Only one of expr, and
expr; is evaluated. Thus to set z to the maximum of a and b,

z = (a>Db) ? a: b; /+ z = max(a, b) »/

It should be noted that the conditional expression is indeed an expression,
and it can be used wherever any other expression can be. If expr, and expr;
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are of different types, the type of the result is determined by the conversion
rules discussed earlier in this chapter. For example, if £ is a float and n is an
int, then the expression

(n>0)? f :n

is of type £loat regardless of whether n is positive.

Parentheses are not necessary around the first expression of a conditional
expression, since the precedence of ?: is very low, just above assignment. They
are advisable anyway, however, since they make the condition part of the
expression easier to see.

The conditional expression often leads to succinct code. For example, this
loop prints n elements of an array, 10 per line, with each column separated by
one blank, and with each line (including the last) terminated by a newline.

for (i = 0; i < n; i++) .
printf ("%6d%c", a[il, (i%10==9 {1} i==n-1) ? ‘\n’ : * *);
A newline is printed after every tenth element, and after the n-th. All other
elements are followed by one blank. This might look tricky, but it’s more com-
pact than the equivalent if-else. Another good example is

printf("You have %d item%s.\n", n, n==1? "" : "g");

Exercise 2-10. Rewrite the function lower, which converts upper case letters
to lower case, with a conditional expression instead of if-else. O

2.12 Precedence and Order of Evaluation

Table 2-1 summarizes the rules for precedence and associativity of all opera-
tors, including those that we have not yet discussed. Operators on the same line
have the same precedence; rows are in order of decreasing precedence, so, for
example, #, /, and % all have the same precedence, which is higher than that of
binary + and -. The “operator” () refers to function call. The operators ->
and . are used to access members of structures; they will be covered in Chapter
6, along with sizeof (size of an object). Chapter 5 discusses * (indirection
through a pointer) and & (address of an object), and Chapter 3 discusses the
comma operator.

Note that the precedence of the bitwise operators &, ~, and i falls below ==
and !=. This implies that bit-testing expressions like

if ((x & MASK) == 0) ...

must be fully parenthesized to give proper results.

C, like most languages, does not specify the order in which the operands of
an operator are evaluated. (The exceptions are &8&, ii, ?:, and *,’.) For
example, in a statement like -
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TABLE 2-1. PRECEDENCE AND ASSOCIATIVITY OF OPERATORS

OPERATORS ASSOCIATIVITY
() [1 -> . left to right
1 ~ 44 == + - » & (type) sizeof right to left
/% left to right
- ‘ left to right
<< >> left to right
< <= > >= left to right

left to right
left to right
left to right
left to right
& left to right
left to right
right to left
+= -= #= /= %= &= "= = <<= >>= right to left
R left to right

- > @

N v -9

Unary +, -, and » have higher precedence than the binary forms.

£() + g();

b4

f may be evaluated before g or vice versa; thus if either £ or g alters a variable
on which the other depends, x can depend on the order of evaluation. Inter-
mediate results can be stored in temporary variables to ensure a particular
sequence. :

Similarly, the order in which function arguments are evaluated is not speci-
fied, so the statement

printf("%d %d\n", ++n, power(2, n)); /% WRONG #/

can produce different results with different compilers, depending on whether n
is incremented before power is called. The solution, of course, is to write

++n;
printf("%d %d\n", n, power(2, n));

Function calls, nested assignment statements, and increment and decrement
operators cause “side effects” —some variable is changed as a by-product of the
evaluation of an expression. In any expression involving side effects, there can
be subtle dependencies on the order in which variables taking part in the expres-
sion are updated. One unhappy situation is typified by the statement

afi] = i++;

The question is whether the subscript is the old value of i or the new.
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Compilers can interpret this in different ways, and generate different answers
depending on their interpretation. The standard intentionally leaves most such
matters unspecified. When side effects (assignment to variables) take place
within an expression is left to the discretion of the compiler, since the best order
depends strongly on machine architecture. (The standard does specify that all
side effects on arguments take effect before a function is called, but that would
not help in the call to printf above.)

The moral is that writing code that depends on order of evaluation is a bad
programming practice in any language. Naturally, it is necessary to know what
things to avoid, but if you don’t know how they are done on various machines,
you won'’t be tempted to take advantage of a particular implementation.



cHAPTER 3: Control Flow

The control-flow statements of a language specify the order in which compu-
tations are performed. We have already met the most common control-flow
constructions in earlier examples; here we will complete the set, and be more
precise about the ones discussed before.

3.1 Statements and Blocks

An expression such as x = 0 or i++ or printf(...) becomes a statement

when it is followed by a semicolon, as in

x = 03

i+4

printf(...);
In C, the semicolon is a statement terminator, rather than a separator as it is in
languages like Pascal.

Braces { and } are used to group declarations and statements together into a
compound statement, or block, so that they are syntactically equivalent to a
single statement. The braces that surround the statements of a function are one
obvious example; braces around multiple statements after an if, else, while,
or for are another. (Variables can be declared inside any block; we will talk
about this in Chapter 4.) There is no semicolon after the right brace that ends
a block.

3.2 |If-Else
The if-else statement is used to express decisions. Formally, the syntax is

if (expression)
statement |
else
statement ,

55
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where the else part is optional. The expression is evaluated; if it is true (that
is, if expression has a non-zero value), statement, is executed. If it is false
(expression is zero) and if there is an else part, statement, is executed
instead.

Since an if simply tests the numeric value of an expression, certain coding
shortcuts are possible. The most obvious is writing

if (expression)
instead of
if (expression 1= 0)

Sometimes this is natural and clear; at other times it can be cryptic.

Because the else part of an if-else is optional, there is an ambiguity
when an else is omitted from a nested if sequence. This is resolved by asso-
ciating the else with the closest previous else-less if. For example, in

if (n > 0)
if (a > b)
zZ = aj;
else
Zz = b;

the else goes with the inner if, as we have shown by indentation. If that isn’t
what you want, braces must be used to force the proper association:

if (n > 0) {
if (a > b)
zZ = a;
}
else
z = b;

The ambiguity is especially pernicious in situations like this:

if (n >= 0)
for (i = 0; i < n; i++)
if (s[i] > 0) {
printf("...");
return i;

}
else /% WRONG */
printf("error ~-- n is negative\n");

The indentation shows unequivocally what you want, but the compiler doesn’t
get the message, and associates the else with the inner if. This kind of bug
can be hard to find; it’s a good idea to use braces when there are nested ifs.

By the way, notice that there is a semicolon after z = a in
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if (a > b)
Z = a;
else
Z = b;

This is because grammatically, a statement follows the if, and an expression
statement like “z = a;” is always terminated by a semicolon.

3.3 Else-If
The construction

if (expression)
statement

else if (expression)
statement

else if (expression)
statement

else if (expression)
Statement

else
statement

occurs so often that it is worth a brief separate discussion. This sequence of if
statements is the most general way of writing a multi-way decision. The
expressions are evaluated in order; if any expression is true, the statement asso-
ciated with it is executed, and this terminates the whole chain. As always, the
code for each statement is either a single statement, or a group in braces.

The last else part handles the “none of the above™ or default case where
none of the other conditions is satisfied. Sometimes there is no explicit action
for the default; in that case the trailing

else
statement

can be omitted, or it may be used for error checking to catch an “impossible”
condition.

To illustrate a three-way decision, here is a binary search function that
decides if a particular value x occurs in the sorted array v. The elements of v
must be in increasing order. The function returns the position (a number
between 0 and n-1) if x occurs in v, and -1 if not.

Binary search first compares the input value x to the middle element of the
array v. If x is less than the middle value, searching focuses on the lower half
of the table, otherwise on the upper half. In either case, the next step is to com-
pare x to the middle element of the selected half. This process of dividing the
range in two continues until the value is found or the range is empty.
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/% binsearch: find x in v[0] <= v[1] <= ... <= v[n-1] =/
int binsearch(int x, int v[], int n)
{

int low, high, mid;

low = 0;
high = n - 1;
while (low <= high) ({
mid = (low+high) / 2;
if (x < v[mid])
high = mid - 1;
else if (x > v[mid])
low = mid + 1;
else /% found match »/
return mid;

}

return -1; /# no match «/

}

The fundamental decision is whether x is less than, greater than, or equal to the
middle element v[mid] at each step; this is a natural for else-if.

Exercise 3-1. Our binary search makes two tests inside the loop, when one
would suffice (at the price of more tests outside). Write a version with only one
test inside the loop and measure the difference in run-time. O

3.4 Switch

The switch statement is a multi-way decision that tests whether an expres-
sion matches one of a number of constant integer values, and branches accord-

ingly.

switch (expression) {
case const-expr: Sstatements
case const-expr: Sstatements
default: statements

}

Each case is labeled by one or more integer-valued constants or constant expres-
sions. If a case matches the expression value, execution starts at that case. All
case expressions must be different. The case labeled default is executed if
none of the other cases are satisfied. A default is optional; if it isn’t there
and if none of the cases match, no action at all takes place. Cases and the
default clause can occur in any order.

In Chapter 1 we wrote a program to count the occurrences of each digit,
white space, and all other characters, using a sequence of if ... else if ..
else. Here is the same program with a switch:
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#include <stdio.h>

main() /% count digits, white space, others »/

{
int ¢, i, nwhite, nother, ndigit[10];
nwhite = nother = 0;
for (i = 0; i < 10; i++)
ndigit[i] = 0;
while ((c = getchar()) != EOF) {
switch (c) {
case ‘0°: case '1’: case ’‘2’: case ’‘3’: case ’4’:
case ‘5’: case ‘6’: case ‘7’: case ‘8’: case ‘9’:
ndigit[c-70’]++;
break;
case ' ‘:
case ‘\n’:
case ‘\t’:
nwhite++;
break;
default:
nother++;
break;
}
} v
printf("digits =");
for (i = 0; i < 10; i++)
printf(" %d", ndigit{i]);
printf(", white space = %d, other = %d\n",
nwhite, nother);
return 0;
}

The break statement causes an immediate exit from the switch. Because
cases serve just as labels, after the code for one case is done, execution falls
through to the next unless you take explicit action to escape. break and
return are the most common ways to leave a switch. A break statement
can also be used to force an immediate exit from while, for, and do loops, as
will be discussed later in this chapter.

Falling through cases is a mixed blessing. On the positive side, it allows
several cases to be attached to a single action, as with the digits in this example.
But it also implies that normally each case must end with a break to prevent
falling through to the next. Falling through from one case to another is not
robust, being prone to disintegration when the program is modified. With the
exception of multiple labels for a single computation, fall-throughs should be
used sparingly, and commented.

As a matter of good form, put a break after the last case (the default
here) even though it’s logically unnecessary. Some day when another case gets
added at the end, this bit of defensive programming will save you.
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Exercise 3-2. Write a function escape(s,t) that converts characters like
newline and tab into visible escape sequences like \n and \t as it copies the
string t to s. Use a switch. Write a function for the other direction as well,
converting escape sequences into the real characters. O

3.5 Loops—While and For

We have already encountered the while and for loops. In

while (expression)
statement

the expression is evaluated. If it is non-zero, statement is executed and expres-
sion is re-evaluated. This cycle continues until expression becomes zero, at
which point execution resumes after statement.

The for statement

for (expr,; expr,; expr;)
statement

is equivalent to
expr, ;
while (expr,) {
Statement
exprs;
}
except for the behavior of continue, which is described in Section 3.7.
Grammatically, the three components of a for loop are expressions. Most
commonly, expr, and expr; are assignments or function calls and expr, is a
relational expression. Any of the three parts can be omitted, although the semi-
colons must remain. If expr, or expr; is omitted, it is simply dropped from the
expansion. If the test, expr,, is not present, it is taken as permanently true, so

for (;3) {

}

is an “infinite” loop, presumably to be broken by other means, such as a break
or return.

Whether to use while or for is largely a matter of pers