
Instructions

August 28, 2024

1 How do Instructions get into Memory?

Source File

Editor

Compiler

Assembly File

AssemblerObject FileLibraries

Linker

Executable File
(a.out)

LoaderShared Objects
(.so / .dll)

Main Memory

2 What kinds of Instructions should the CPU Have?

• Arithmetic Instructions

– Add/Subtract

– Multiply/Divide

• Logic

– AND, OR, NOT, XOR

• Shifts

– Left/Right Shift

– Rotate

• Control

– Branch (usually conditional)

– Jump (usually unconditional)

– Jump & Link (for procedure linkage)

– Return from procedure

• Memory

– Load

1

– Store

∗ Addressing Modes

∗ Granularity (Number of bytes)

∗ Endianness

∗ Byte vs. Word Addressability

Granularity How many bytes do you load or store when you access memory? Depends on what type you are loading or
storing.

• char one byte

• short two bytes

• int four bytes

• long eight bytes

• char*, int*, etc four or eight bytes

• float four bytes

• double eight bytes

Alignment Address MOD Granularity = 0 if aligned

Example: Aligned store of a short

• Address = 0x7FFF0704

• Granularity of short = 2 bytes

• 0x7FFF0704 MOD 2 = 0, so it is an aligned store.

Example: Unaligned load of an int

• Address = 0x7FFF070A

• Granularity of int = 4 bytes

• 0x7FFF070A MOD 4 = 2, so it is an UNaligned load.

3 Instruction Formats

RISC-V defines four types of instructions:

• R-Type: Used for register-register operations.

• I-Type: Used for register-immediate operations.

• S-Type: Alternative format for register-immediate operations.

• U-Type: Used for instructions that need long immediate values.

2

31 25 24 20 19 15 14 12 11 7 6 0

funct7 rs2 rs1 funct3 rd opcode R-type

imm[11:0] rs1 funct3 rd opcode I-type

imm[11:5] rs2 rs1 funct3 imm[4:0] opcode S-type

imm[31:12] rd opcode U-type

Figure 1: RISC-V Instruction Types

3.1 Operands

• Register:

– value = R[rx] (source)

– R[rx] = value (destination)

• Immediate: imm = sext(I[11:0])

• Register Indirect: effective address = R[rx]

• Base + Displacement: effective address = R[rx] + sext(imm)

Special case: PC Relative: effective address = PC + sext(imm)

• Memory Indirect: M[M[R[rx]]]

• Scaled: effective address = R[rx] + k * R[ry]

• Indexed: effective address = R[rx] + R[ry]

• Absolute: effective address = imm

• Autoincrement/decrement: effective address = R[rx] + disp

R[rx] += datatype size

or
R[rx] -= datatype size

• Base + Displacement with update: effective address = R[rx] + displacement

R[rx] += displacement

How many operands does an instruciton need? Usually 3: two source, one destination.
Exceptions:

• Division: two source, two destination (quotient + remainder)

• Multiplication: may need a double-precision result, so two destination registers

• Multiply-Add: d← a× b + c

4 What do we Want from an ISA?

For the Hardware: Make it easy to implement

• Fast decode, fast fetch: need fixed size instructions

3

• Easy to Pipeline

• Easy to parallelize: Fixed formats

For the Software: Make it easy to compile for

• Regularity: If you do someting one way in one place, you should do it the same way in other places. Example of an
irregular instruction is bit shifts on x86. Only CX/ECX/RCX can be used as the shift count register.

• Composability: You should be able to do any operation by combining instructions.

• Orthogonality

– Addressing mode is independent from instruction operation

– This is in opposition to load/store architecture

5 x86

x86 has variable length instructions (1-15 bytes). It is not possible to have fixed field placement.

5.1 Instruction Formats

5.1.1 One-Byte Opcodes

prefix opcode operand1 operand2 ...

Example

mov $0, -4(%rbp)

c7 45 fc 00 00 00 00

• 0xc7 MOV opcode

• 0x45 BP+OFFSET Addressing Mode

• 0xfc OFFSET

• 0x00 00 00 00 Immediate

5.1.2 Two-Byte Opcodes

prefix 0x0f opcode operand1 operand2 ...

Example

jne 34

0f 85 22 00 00 00

• 0x0f Multibyte opcode

• 0x85 jne opcode

• 0x22 00 00 00 Jump target absolute address

4

6 RISC-V

6.1 Registers

Register Names ABI Names Description

x0 zero Hard-wired zero
x1 ra Return address
x2 sp Stack pointer
x3 gp Global pointer
x4 tp Thread pointer
x5 t0 Temporary/alternate link register
x6-7 t1-t2 Temporary registers
x8 s0/fp Saved register/frame pointer
x9 s1 Saved register
x10-11 a0-a1 Function argument/return value registers
x12-17 a2-a7 Function argument registers
x18-27 s2-s11 Saved registers
x28-31 s3-s6 Temporary registers

6.2 Instruction Types

R-Format Used for arithmetic and logical instructions

add x1, x2, x3

I-Format Used for arithmetic and logical instructions with one immediate operand

addi x1, x2, 1

S-Format Alternative format for instructions with immediate operand

sd x1, 4(x9)

U-Format Used for instructions that need long immediate fields

lui x2, 0xfffff000

5

