COMP 362 COMPUTER ARCHITECTURE

Neil Klingensmith

neildcs.luc.edu
https://neilklingensmith.com/teaching/loyola/cs362-£2025/

150)(0) .\

IIIIIIIIIIIIIIIII

Y 1870/
= l:f ’)}]O
'?6‘114 Q}

CLASS TIMING

« M/W 2:30-4PM?
* NO class Friday
* Lab Wednesday 6-8 PM in Doyle Makerspace

WHAT YOU’RE GONNA LEARN

* How the CPU works

* Design issues and tradeoffs
* Verilog

 FPGA Synthesis

LLLLLLLLLLLLLLLL

oV
P
I
|

Pentium Il

Pentium 4 CUDA

RTX 4090

o
(¢}]
=]
a
x
[
o

48 Years of Microprocessor Trend Data

! ! ! ! NG|
] i i o aE Trans
3 3 3 W Transistors
108 e - - L (thousands)
L Laar Single-Thread
3 j Performance 9
ot N— spa kel (SpecINT x 107)
| S } | Frequency (MHz)
100 Ar 4, of @ ¢ g B ,
| . & 'ﬂ-. ? Typical Power
1Pt s e v A RTRETY WYY (Watts)
A .'3= vvvv : v f
i - m " v o2 Number of
10 T S vy 1 Logical Cores
A ! v A 4 v A\ 2 4
100 —Q: ———————————— X ————— * » 00{0——*—%%00 —————————— —————————————————————————— -
| | | |
1970 1980 1990 2000 2010 2020
Year

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2019 by K. Rupp

DENARD SCALING: SPEEDUP DRIVEN BY CHEMISTRY

All TEM images here have the same scale

2003 2005 2007 2009 2012
90nm node 65nm node 45nm node 32nm node 22nm node
(FINfet)
. 5 . S * o ‘
0.7x scaling . o (S

* Very little change in physical gate length, only ~0.9x per node
* The gate pitch is scaling fast, as 0.7x per node and area scales as 0.5x
* Most of the transistor innovation is in stress engineering and HKMG

22 nm 15 Generation
Tri-gate Transistor

SYNOPSYS'

Predictable Success

: 400 MHz
I 8-bit, 8 MHz <inTe|.d;> , L
ins - -
2000‘ mE / 2-stage pipeline insi4y/ 10-stage 2-wide 000 pipeline

pentiume///

Ll 25 MHz N |2 GHz

2005 cPy o
o120 k] 3-stage pipeline HyperThreading
31-stage 3-wide 00O pipeline
arm 100 MHz | intel)| 2 GHz
2010 SO NV 3-stage pipeline Core 2 HyperThreading
Du

floating point + DMA 0 18-stage 4-wide 000 pipeline

2015 arm j 2 GHz
CORTEX®-M7 4 HyperThreading

300 MHz 18-stage 9-wide Oo00 pipeline
6-stage 2-wide in-order pipeline
floating point, DMA, DRAM IF

2020)

2.5 GHz

(no HyperThreading)
18-stage 6-wide?
000 pipeline

400 MHz . .
- . i | . . - ||
2OOOAII."E 5-bit, 8 MHz <'"?r\e$id“'> 10-stage 2-wide 00O pipeline 8-bit vs 32-bit
e 2-Stage pipeline et
2005
2010
2015

2020 ?

2000

Sl 25 MHz |2 GHz

2005 cPy o
o)1 ¢ k) 3-stage pipeline HyperThreading Low Power
31-stage 3-wide OoO
VS
arm 100 MHz \(intel) 2 GHz High Power
2010 SO NV 3-stage pipeline Core2 HyperThreading
floating point + DMA Duo 18-stage 4-wide OoO
2015

2020 ’) >

2000

2005

2010

2015

2020

arm
CORTEX®-M7

300 MHz
6-stage 2-wide in-order pipeline
floating point, DMA, DRAM IF

?

(in tela inside”

o, TLBvVs No TLB

HyperThreading
18-stage 9-wide OoO

COMPUTER ARCHITECTURE STARTUPS

LUMINARY MICRO @

* First company to produce ARM Cortex-M3 MCUs

* Founded in 2004 by Jim Reinhart and Jean Anne Booth
« Raised $44 MM from 4 investors

* Acquired by Tl in 2009 with ~70 employees

B

OCTAVO SYSTEMS

* Build computer-in-package

18mm x 18mm
Standard IC Package

STPMIC1
PMIC

Up To
1GB DDR3

W 302 Ball BGA
1mm Pitch

Passives

MEMs Oscillator

~ NST STM32MP15x
4KB EEPROM

Dual Arm® Cortex®-A7
Arm?® Cortex®-M4

* Founded 2015 by some old guys who defected from Tl

@ SiFive

* Make chips based on RISC-V CPU
* Founded by some guys who quit their PhDs at Berkeley
* Raised $130MM

N
ON

* Make Al accelerator chips that don't use von Neumann
architecture.

* Founded by guys from Dartmouth in 2022.

OBVIOUS OPPORTUNITIES

* Multicore microcontrollers with shared memory
* Microcontroller with low-power TLB
* Open-source GPU (a la RISC-V/SiFive)

COURSE ADMINISTRIVIA

TEXTBOOK
Get it.

GOMPUTER ORGANIZATION
AND DESIGN RiSc-V EDITION

THEHARDWARESORVARETERFCE

o SEONDEDION

LAB

- Lab located in Doyle Makerspace
- Computers in that room have ModelSim

ModelSim

INTEL QUARTUS LITE

Runs in Windows & Linux
Installing it is a mission.

(Intel site was down as of this morning...)

intel.

Quartus® \

Prime

Design Software

2x20 Altera MAX 10
GPIO 10M50DAF484C7G

Accelerometer 4-bit Resistor VCA

Arduino
Connector

5V Power

TERASIC DE10-LITE TR

64MB SDRAM

i

Button x2

* 50k Logic Elements (gates) _ svono SEaigein - —Beies ;; j

* 1.6 Mbytes SRAM N L T
* 5.8 Mbytes flash ‘

* 144 hardware multipliers

-4 PLLs

GRADING e

No quizzes or exams. Your whole grade is Homework 40%
based on homework and final project.

No partial credit for code that doesn'’t

compile. Course Project 40%
Start homework on Tuesday/Wednesday so

you can get help on Thursday in lab if you
get stuck.

Slop Days: Everyone gets 5 slop days. Each
slop day allows you to turn in an assignment
24 hours late.

Participation 20%

= ..
DEMO DAYS

* Course project will be done in 3
segments.

* For each segment we will do a demo
day.

ABOUT RISC-V

RISC-V RISC

« Open-source RISC processor
« Unlike ARM, you can design your own RISC-V compatible CPU
without paying anyone
* Instruction Set Architecture fixes some ugly bugs that have been
around in other CPUs like OpenRISC and MIPS.

« gcc portis available (you should install it)
 Documentation is available

INSTRUCTION SET ARCHITECTURES

i

i

TN

INSTRUCTION SET ARCHITECTURE (ISA)

* Unified (among CPU models) & well-defined interface btw
software and hardware

* register names, instruction mneumonics, memory model, etc.
 If hardware changes, old software will still work

* Example: x86 programs from 1985 still run on brand new Core
17

MICROARCHITECTURE (THIS CLASS)

* Block diagram of CPU
* Underlying hardware that implements the ISA

THEMES

3 BIG IDEAS IN ARCHITECTURE

* Pipelining
* Parallelism
» Caching

1. OVERHEAD KILLS

* 20% of instructions are branches
» 2/5 pipeline stages (fetch and decode) are overhead

2. LOCALITY KILLS

* |nstruction dependence chains limit parallelism

INSTRUCTIONS

KINDS OF INSTRUCTIONS

* Arithmetic « Control
« Add, subtract, multiply, Branch/Jump
divide
. * Procedure calls
* Logic
. AND, OR, NOT. XOR * Memory Accesses
e Shifts * Load/store

« Left shift, right shift,
rotate, etc.

THE ONLY THING A COMPUTER KNOWS HOW TO
DO IS EXECUTE INSTRUCTIONS.

Read Memory _
Fetch —»| Decode — —»| Execute —> —»| Writeback
Operands Access

THE ONLY THING A COMPUTER KNOWS HOW TO
DO IS EXECUTE INSTRUCTIONS.

Read Memory _
Decode — —»| Execute —> —»| Writeback
Operands Access

0x3900

THE ONLY THING A COMPUTER KNOWS HOW TO
DO IS EXECUTE INSTRUCTIONS.

mov [si+tbx],ax

0x3900

Read Memory _
—»| Execute —> —»| Writeback
Operands Access

THE ONLY THING A COMPUTER KNOWS HOW TO
DO IS EXECUTE INSTRUCTIONS.

mov [si+tbx],ax

Read Memory _
Fetch —»| Decode Execute —> —»| Writeback
Operands Access

ax: 0x1234
bx: 0x0002
si: 0Ox5678

0x3900

THE ONLY THING A COMPUTER KNOWS HOW TO
DO IS EXECUTE INSTRUCTIONS.

mov [si+tbx],ax EA: Oxbo'7A
Fetch —»{ Decode —> Read —»M Memory —»| Writeback
Operands Access
A
ax: 0x1234
0x8900
bx: 0x0002

si: 0Ox5678

THE ONLY THING A COMPUTER KNOWS HOW TO
DO IS EXECUTE INSTRUCTIONS.

mov [si+tbx],ax EA: Oxbo'7A
Fetch —»| Decode — Read —»| Execute Writeback
Operands Access
A
: Ox1234
0x8900 ax = mem[0Oxb567A] <- 0x1234
bx: 0x0002

si: 0Ox5678

THE ONLY THING A COMPUTER KNOWS HOW TO
DO IS EXECUTE INSTRUCTIONS.

mov [si+tbx],ax EA: Oxbo'7A
Read Memory M
Fetch —»| Decode —> —»| Execute —>
Operands Access
A
: 0x1234
0x8900 ax = mem[0Oxb567A] <- 0x1234
bx: 0x0002

si: 0Ox5678

THE ONLY THING A COMPUTER KNOWS HOW TO
DO IS EXECUTE INSTRUCTIONS.

Read Memory _
Decode — —»| Execute —> —»| Writeback
Operands Access

0x89eb

THE ONLY THING A COMPUTER KNOWS HOW TO
DO IS EXECUTE INSTRUCTIONS.

Read Memory _
—»| Execute —> —»| Writeback
Operands Access

f

0x89e5 mov bp, sp

THE ONLY THING A COMPUTER KNOWS HOW TO
DO IS EXECUTE INSTRUCTIONS.

Read Memory _
Fetch —»| Decode Execute —> —»| Writeback
Operands Access

f

SpP
0x89e5 mov bp,sp contains

0x1000

THE ONLY THING A COMPUTER KNOWS HOW TO
DO IS EXECUTE INSTRUCTIONS.

Read Memory _
Fetch —»| Decode — —»| Writeback
Operands Access

f

SpP
0x89e5 mov bp,sp contains

0x1000

THE ONLY THING A COMPUTER KNOWS HOW TO
DO IS EXECUTE INSTRUCTIONS.

Read Memory _
Fetch —»| Decode — —»| Execute Writeback
Operands Access

f

SpP
0x89e5 mov bp,sp contains

0x1000

THE ONLY THING A COMPUTER KNOWS HOW TO
DO IS EXECUTE INSTRUCTIONS.

Read Memory
Fetch —»| Decode — —»| Execute —>
Operands Access

f

SP
O0x89e5 mov bp,sp contains Set BP<-0x1000

0x1000

THE ONLY THING A COMPUTER KNOWS HOW TO
DO IS EXECUTE INSTRUCTIONS.

Read Memory _
Decode — —»| Execute —> —»| Writeback
Operands Access

Ox30ff

THE ONLY THING A COMPUTER KNOWS HOW TO
DO IS EXECUTE INSTRUCTIONS.

Read Memory _
—»| Execute —> —»| Writeback
Operands Access

f

O0x30ff xor bh,bh

THE ONLY THING A COMPUTER KNOWS HOW TO
DO IS EXECUTE INSTRUCTIONS.

Read Memory _
Fetch —»| Decode Execute —> —»| Writeback
Operands Access

f

bh
O0x30ff Xor bh,bh contains

0x7199

THE ONLY THING A COMPUTER KNOWS HOW TO
DO IS EXECUTE INSTRUCTIONS.

Read Memory _
Fetch —»| Decode — —»| Writeback
Operands Access

f

bh O0x7199
0x30ff Xor bh,bh contains XOR

0x7199 0x7199

0x0000

THE ONLY THING A COMPUTER KNOWS HOW TO
DO IS EXECUTE INSTRUCTIONS.

Read Memory _
Fetch —»| Decode — —»| Execute Writeback
Operands Access

f

bh O0x7199
0x30ff Xor bh,bh contains XOR

0x7199 0x7199

0x0000

THE ONLY THING A COMPUTER KNOWS HOW TO
DO IS EXECUTE INSTRUCTIONS.

Read Memory
Fetch —»| Decode — —»| Execute —>
Operands Access

f
bh 0x7199

0x7199 0x7199

0x0000

