
COMP 362 Project Description

July 30, 2020

1 Intro

In this class, the final project will be to build a functional microprocessor that
can execute RISC-V instructions. We will design the processor in Verilog and
simulate it in ModelSim. If we have time, we will synthesize the design for the
DE10-Lite board. The project will be completed in six phases:

1. Build a single-cycle non-pipelined processor with an idealized memory that
never stalls.

2. Add pipeline latches to separate the design into five stages, still using an
ideal memory.

3. Transition the memory into a stalling banked memory module.

4. Replace the stalling memory with a custom-designed cache.

5. Synthesize on an FPGA.

2 Milestones

2.1 Design Review

Each team will draw a complete schematic of the unpipelined CPU using a CAD
tool like OpenOffice Draw of Adobe Illustrator. Each module, bus, and signal
should be uniquely named. The schematic should be hierarchical so the top-
level design contains only large blocks (like register file, ALU, control logic, etc).
There will be a one-to-one mapping of modules in your schematic to modules
that you implement in Verilog.

During the design review, the team will need to describe how the datapath
can implement any legal RISC-V instruction using your schematic as a reference.
Teams should also be able to justify their design decisions. The team should
think through the control path and decode logic.

1



data_in
addr
enable
wr
clk
rst
createdump

data_out

Figure 1: Block diagram of the single-cycle memory.

enable wr Function data out

0 x No Operation 0

1 0 Read mem[addr]

1 1 Write data in 0

Table 1: Operation of the single-cycle memory.

2.2 Phase I: Single-Cycle, Unpipelined CPU

In this phase of the design, you will implement a single cycle unpipelined CPU
similar to Figure 4.17 on page 257 of the Hennesey and Patterson textbook.
You will use a single-cycle memory for the instruction memory and data mem-
ory. A verilog module for the memory will be available on the course website.
Both memories will be initialized with identical copies of your program binary,
including the program’s instructions and its initialized data.

2.2.1 Single-Cycle Memory Specification

During each cycle, the enable and wr inputs determina what function the mem-
ory will perform according to Table 1.

During a read cycle, the data output will immediately reflect the contents of
the addr input and will change in a flow through fashion if the address changes.
For writes, the wr, addr, and data in signals must be stable at the rising edge
of the clk.

At the beginning of the simulation, the memory is initialized from a file
called loadfile all.img. You can change the name of the load file in the
Verilog source of the memory module if you want. The file is loaded at the first
rising edge of the clock during reset. The file format is:

@0

12

12

12

where @0 specifies the starting address of zero and 12 represents any 2-digit
hex number. Any number of lines may be specified up to the size of the memory.

2



You can produce a hex file output in this format with gcc and binutils using
the following syntax:

gcc -c testfile.s

objcopy -O verilog testfile.o loadfile_all.img

At the end of the simulation, the memory can produce a dumpfile so you
can determine what has been written to memory. When the createdump signal
is asserted at the rising edge of a clock, the memory will create a file called
dumpfile in the Mentor directory. You may want to use the decode of the
halt instruction to assert createdump on the data memory. The dumpfile will
contain memory values from zero to the highest address modified by a write
cycle (not the highest address loaded from the loadfile). The format is:

0000 1234

0001 1234

0002 1234

2.2.2 Testing Your Design

You will test your design by writing simple programs in assembly language and
running those programs to ensure that they produce the expected output. On
demo day, the instructional team will verify that your CPU can correctly execute
some sample programs that we have prepared. To be sure that your processor
will pass, you should run your own rigorous tests before demo day. There are a
few different types of tests that people usually run:

1. Instruction-specific tests to verify that the CPU can correctly execute
every variant of a particular instruction.

2. Random instruction tests are just a bunch of random instructions that
don’t necessarily do anything useful.

3. Targeted tests to verify that particular paths in the design are working.
This will become much more important in the pipelined design when we
introduce bypass logic between pipeline stages. We will need to test that
all of the bypass muxes are working properly by writing programs that
contain dependence chains among instructions.

2.3 Phase II: Pipelined Design with Perfect Memory

In Phase II, the pipelined version of your design needs to be running correctly
with no optimizations. Correclty means that it must detect and do the right
thing on pipeline hazards (eg. stall). You will still use the single-cycle memory
model.

3



2.4 Phase 2.5: Pipelined Design with Stalling Memory

In this phase, you will replace your perfect memory with a stalling memory,
which is similar except it has stall and done output signals. Your pipeline will
need to stall to handle these conditions. Verify your design. You should use the
following procedure:

• Replace IMEM with the stalling memory, keeping the DMEM the same
(i.e. aligned perfect memory). Verify your design.

• Replace DMEM with the stalling memory, keeping the IMEM aligned
perfect memory. Verify again.

• Replace both IMEM and DMEM and verify.

2.5 Phase III: Pipelined Multi-cycle Memory with Opti-
mizations

In this phase you will synthesize your design on the MAX 10 FPGA board. You
will replace your memory modules with memories provided by the Quartus II
software.

4


