CS 362 Architecture

Fall 2025

http://neilklingensmith.com/teaching/loyola/cs362-f2025

Homework 3

Due: September 4, 2024

Name:

1. (15 points) A multiplexor is a logic device that selects between one of two inputs ($\bf A$ or $\bf B$). If S=0, the output of the multiplexor equals $\bf A$. If S=1, the output of the multiplexor equals $\bf B$.

\mathbf{S}	\mathbf{A}	В	Out
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

It is possible to have a 4-input multiplexor that selects between one of four inputs A, B, C, or D using a 2-bit select signal S1 S2.

- (a) (5 points) Write a truth table for the 4-to-1 multiplexor.
- (b) (10 points) Design logic gate implementation of the 4-to-1 multiplexor based on your truth table. You can use either a Karnaugh map, sum-of-products, or old school Boolean Algebra to implement your design in gates. Use whatever gates you want (AND, OR, NOT, etc). Show your work.
- 2. (5 points) In this question, you're going to design a shifter that shifts a four bit number right by an arbitrary number of bits. For each bit of the output, use a 4-to-1 multiplexor to select which bit of the input is selected.
- 3. (10 points) Ethernet frames start with a 7-byte preamble of alternating 1's and 0's (7 bytes of OxAA) followed by 1 byte of OxAD (called the start-of-frame delimeter).

Design a state machine that recognizes the bit pattern 1010101011 (a truncated version of the preamble plus the start-of-frame delimiter).

Hint: you can use a classical state diagram approach or use a shift register.