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Chapter 1

Introduction

1.1 What is an Operating System?

As we will see throughout this book, computer hardware is complicated and messy. Most
programmers would not like to interact directly with the hardware because of all its idiosyn-
chricies. And since every CPU is different, porting software from one platform to another
would be nightmarish without some kind of intermediate layer between the application and
the hardware.

In fact, in all but the simplest computers, there are many layers of abstraction between
an application and the hardware platform that it runs on. Details like how much memory
the computer has, which applications are allowed to use which portions of memory, what
type of display is available, how the computer is connected to the internet, and many others
are managed by these intermediate layers of software.

1.1.1 Managing Hardware with Abstraction

The Android mobile ecosystem is a great example of abstraction between application and
hardware. Many mobile devices run the Android operating system, with a huge amount of
diversity in hardware capability among them. On the top end of the spectrum live high-
performance tablets, mostly with price points in the range of $1,000-$2,000. These devices
have big screens, fast WiFi and cellular networking interfaces, large memories, and fast
processors. Many of them have detatchable keyboards, styluses, and other Bluetooth ac-
cessories. Most high-end tablets also come with facial recognition cameras to authenticate
their users without a password. On the low end of the spectrum are small, low-cost and
lightweight phones, many of which cost less than $100. They have smaller screens, slower
CPUs and network interfaces, less memory, and fewer connectivity options.

Across all of these hardware platforms, even a seemingly simple task of displaying a menu
on the screen is implemented completely differently. Once the layout of the menu screen is
set by the application software, objects like text, images, and buttons are rendered into
a rasterized image in memory. In the rasterization process, each pixel’s color is set to an
RGB value which is stored in an array in memory. The dimensions of the rasterized screen
array depend on the size of the screen, which is different on each device. Once this rasterized
array is constructed in memory, it needs to be transmitted from the main CPU to the display
unit, which usually contains a separate coprocessor and memory to hold the contents of the
rasterized screen buffer. The interface between the main CPU and the display coprocessor
is also different on each device.

In the Android operating system, there are many layers of software involved in rendering
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6 CHAPTER 1. INTRODUCTION

the display buffer and transmitting the rendered image to the screen. Some of those software
modules are hardware-independent and common to all Android systems. These common
modules live inside the operating system, and their purpose is mostly to make the application
programmer’s job easier by automating some common, repetitive tasks like rasterizing text.
Those common tasks need to be done by nearly every app that runs on the device, so it makes
sense to have one common piece of code within the operating system to serve every app.
Doing so reduces bugs (app developers can’t introduce bugs in software they don’t write)
and creates a common interface so application software is easy to write, even by unskilled
developers.

Some of the software modules involved in screen rendering are hardware-dependent, such
as the communication between the mobile device’s main CPU and the display coprocessor. As
we will discuss later in the book, we don’t trust application developers with any kind of direct
access to the system’s hardware. Access to network interfaces, display controllers, power
management, disks, and every other hardware resource is always mediated by the operating
system. With direct access to the hardware, malicious or buggy code could do a lot of
damage: erasing files from the disk, starving other applications of CPU time, attacking other
computers on the network, shuting the machine down without warning, and any number of
other kinds of problematic behavior.

1.1.2 Operating System Abstractions

So the operating system’s role is essentially to serve as a trusted mediator between the
application and the hardware. In doing so, it provides a lot of higher-level abstractions that
free up the application from having to worry about details of the hardware. Android apps
don’t have to worry about how their screens are rendered, rasterized, and transmitted to the
display—the OS does it for them. Apps don’t have to worry about how data is organized
into files and stored onto the device’s SD card—the OS implements a file system that does
it for them. And apps don’t need to worry about sharing CPU time. The OS does that for
them as well. In general, we have a few desired functions for an operating system:

• Allow multiple programs to run simultaneously on the CPU.

• Allocate memory to programs.

• Provide support for files and filesystems.

• Mediate access to displays, input devices, network interfaces, and other I/O devices.

• Provide a user interface with a consistent look and feel.

The common thread among all functions of an OS is that it provides an abstract view
of the computer hardware to the applications. People often say that an operating system’s
job is to present a runtime environment to the computer’s applications that appears as if
each application was the only one using the computer. Most operating systems provide some
version of this vision of solitary execution to their applications, but none of the popular OSes
in widespread use fully embrace it.

Why would an application wish to run in an abstracted environment like this? In the
early days of computing, programs ran in batch mode, in which the computer would run one
program at a time from start to finish. The program would have complete access to all of
the computer’s resources, including its entire memory, its persistent storage1, and all of its
I/O devices. Programmers became accustomed to writing programs that had free rein of the
computer, but there was a problem: it was not possible for two or more programs to coexist

1Computers in those days used tapes instead of disk drives for long-term storage.
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top - 19:57:42 up 3 days, 6:39, 2 users, load average: 0.10, 0.15, 0.14

Tasks: 323 total, 1 running, 320 sleeping, 2 stopped, 0 zombie

%Cpu(s): 0.7 us, 0.3 sy, 0.0 ni, 99.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st

MiB Mem : 3891.1 total, 335.3 free, 2181.4 used, 1374.4 buff/cache

MiB Swap: 0.0 total, 0.0 free, 0.0 used. 1357.2 avail Mem

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

46603 root 20 0 0 0 0 I 1.0 0.0 0:00.35 kworker/0:2+

46541 root 20 0 0 0 0 I 0.7 0.0 0:05.81 kworker/1:0+

46696 neil 20 0 10620 4008 3144 R 0.7 0.1 0:00.10 top

553 root rt 0 289324 27108 9076 S 0.3 0.7 0:58.28 multipathd

640 root 20 0 241204 7024 5340 S 0.3 0.2 10:52.40 vmtoolsd

1593 neil 20 0 312596 6356 5308 S 0.3 0.2 0:24.96 gvfs-afc-vo+

1684 neil 20 0 4097088 191444 71664 S 0.3 4.8 75:33.33 gnome-shell

2152 neil 20 0 4905840 551744 157796 S 0.3 13.8 115:13.77 firefox

27732 neil 20 0 2521696 178500 87048 S 0.3 4.5 3:51.30 Isolated We+

46455 root 20 0 0 0 0 I 0.3 0.0 0:18.64 kworker/0:0+

1 root 20 0 167968 11588 6400 S 0.0 0.3 0:17.33 systemd

2 root 20 0 0 0 0 S 0.0 0.0 0:00.18 kthreadd

3 root 0 -20 0 0 0 I 0.0 0.0 0:00.00 rcu_gp

4 root 0 -20 0 0 0 I 0.0 0.0 0:00.00 rcu_par_gp

6 root 0 -20 0 0 0 I 0.0 0.0 0:00.00 kworker/0:0+

9 root 0 -20 0 0 0 I 0.0 0.0 0:00.00 mm_percpu_wq

10 root 20 0 0 0 0 S 0.0 0.0 0:00.00 rcu_tasks_r+

11 root 20 0 0 0 0 S 0.0 0.0 0:00.00 rcu_tasks_t+

12 root 20 0 0 0 0 S 0.0 0.0 0:30.62 ksoftirqd/0

13 root 20 0 0 0 0 I 0.0 0.0 0:27.14 rcu_sched

Figure 1.1: The output of top showing many process running on the system.

on a computer at once. Operating systems were invented in large part to allow multiple
programs to “time share” computers.

But by the time operating systems came into wider use, programmers were already ac-
customed to writing solitary programs that did not need to coexist with one another. So
operating system programmers aimed to present a runtime environment that resembled the
batch programming their users were comfortable with. Although this illusion of a completely
isolated program has deteriorated over the years as programmers and operating systems have
evolved, the legacy of the batch-mode programming model lives on in some respects. Iso-
lated memory spaces—the concept that two programs sharing the CPU have no access to
one another’s code or variables—is a clear vestige of batch-mode programming.

Figure ?? shows the output of the Linux top program, which displays the computer’s
CPU and memory usage along with a sorted list of active processes. When this top snapshot
was captured, there were 321 processes sharing the CPU, all of which were running under
this illusion of isolation provided by the Linux operating system. Each process had its own
memory space containing variables and code that only it could access. Each process also had
the illusion that the CPU was under its complete control—there is no need for any of the
processes to actively relenquish control of the CPU so other programs could run. Although
not all 321 process could be actively executing simultaneously, the operating system provides
the illusion of concurrency by allowing one to run for a while, then stopping that process
and giving access to the CPU to a different process for a while. The Linux operating system
is responsible for switching between actively running processes. From the user’s perspective,
all the processes appear to run simultaneously, even though only one or two of them can be
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active at a time2.
In this book, we build a simple operating system that provides basic hardware virtual-

ization: memory isolation, time sharing and file systems. We build this operating system
on the Intel 386 PC platform. The PC platform is convenient because it is well-documented
and widely available.

1.2 A History of x86 CPUs

Starting in the 1940s and continuing through about 1975, all computers were one-off designs.
When a new computer was to be built, a team of 20 or so hardware engineers would spend
three to five years laying out its specifications and designing its hardware. In these early
days, logic components like AND gates and flip flops were built from discrete transistors wired
together on printed circuit boards the size of a sheet of paper. A separate team of software
engineers would write a custom operating system, compiler, and other tools specifically for
the new design.

All this changed in the mid 1970s with the invention of the integrated circuit, which
could pack multiple transistors on a single piece of Silicon. It was possible to fit an entire
computer on a single chip and mass produce them at a fraction of the cost of mainframes
and supercomputers. Integration as it was called was the key technological advancement
that made personal computers economical.

In 1968, a small group of engineers left Fairchild Semiconductor to found Intel. At first
they produced memory chips, but in 1971 they released the first fully integrated micropro-
cessor, the 4004. While fairly useless by today’s standards, the 4004 enabled miniturized
electronics like calculators. It was soon succeed by the 8008 and 8080 the first 8-bit micro-
processors.

In 1976, Intel released the 8086, the product that would lead them to market dominance
in PCs and servers. The 8086 was a fairly versatile 16-bit computer that made sense as
the central component for PCs and minicomputers. However, as we will see later, it has a
nonintuitive programmer’s model and memory structure that is still being used in modern
PCs today.

One important problem that designers of the 8086 had to overcome was memory address-
ability in a 16-bit computer. 16-bit addresses only would allow the programmer to access
216 = 65536 bytes of RAM, which was considered too little to be useful at the time. Pro-
grammers expected to have at least one megabyte of addressable memory, but that would
require 20 address bits.

The solution they devised, which even at the time was widely seen as a kludge, was to
use segmented addressing in which complete 20-bit addresses would be formed as the sum
of a segment register plus a 16-bit pointer. Although crude, programmers learned to work
with segmented addressing in x86 processors.

A marketing campaign by Intel targeted at manufacturers of PCs, minicomputers, and
electronics manufacturers resulted in wide adoption of the 8086 and its successors. Despite
its shortcomings, the 8086 was a success in the marketplace. Intel’s price and first-mover
advantages, not the technical merits of their product, made them successful.

A few years later, in 1979, Motorola released a competitive CPU called the 68000, so
named because of the number of transistors on its dye. Their design improved upon the
8086 in many ways. First, all registers in the 68000 were 32 bits long, making it possible to
address significantly more memory without using segmentation. Second, the instruction set
and programmer’s model of the 68000 was much more intuitive than that of the 8086.

2Each CPU core can actively execute one process. A computer with four CPU cores can actively execute
four processes simultaneously, even though many more processes may be running on the system. The
remaining processes are waiting for the operating system to give them access to one of the cores.
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What happened next—part cost saving measure and part logistics solution—ultimately
shaped the PC and server markets for decades. IBM, planning the new release of a home
computer, chose the 8086 to be the central component of its new product. This decision was
made because of the lower cost and wider availability of the 8086 and its peripheral compo-
nents relative to the 68000. Apple, which was in process of designing the first Macintosh,
chose to work with the 68000 for performance reasons.

When IBM shipped its first PCs, it also published a full set of schematics inside the
user manual. Apple, a much more secretive organization, published very little information
about the hardware and software inside the Macintosh. This had two effects. First, the
availability of documentation about hardware and software on the PC made it much easier
for third-party developers to write software for it. Even though the Macintosh had a much
sleeker user interface, the lack of third party software support through the 80s and early
90s nearly lead to the company’s demise. Second, low-cost clones of the IBM PC—made by
Compaq and others—were widely available. As a result, the cost of ownership of the IBM
PC was much lower and its utility was much higher. Riding on the success of the IBM PC,
Intel’s 8086 and successors became the most popular CPUs in desktop computers. Motorola
eventually sold off and shut down its semiconductor division, including the 68000.

This book discusses operating system concepts and implementation techniques, with a
focus on implementation on 8086-family CPUs. In particular, we work directly with hardware
and software details of ihe i386 variant—the first to offer full support for most modern
operating system features. Later variants, including the Pentium family and the AMD64
architecture offer architectural enhancements that give us performance gains—at the expense
of quite a bit of additional complexity for the programmer. But the core concepts can all be
implemented on the i386 CPU.

1.3 The i386 Programmer’s Model

Before we begin discussing core operating systems concepts, it is important to have some
base understanding of the low-level programmer’s model of our CPU. Many of the oper-
ating system features we will introduce later in the book—virtual memory, time sharing,
etc—will require us to manipulate the CPU at the assembly level. Although most of our
operating system will be programmed in C, we will need to make use of a few assembly lan-
guage instructions, and even many of the features of the OS implemented in C are directly
manipulating some low-level features of the CPU.

We will start by discussing the i386’s 16-bit real mode, which is a compatibility mode
that allows the processor to run programs and operating systems written for the older 8086
CPU. Most of the concepts and features of the 8086 such as interrupts, registers, and stack
frames should be familiar. The 8086 family CPUs do present a bit of a curve ball in the way
they manage memory, which we will also discuss in the following sections.

1.3.1 16-Bit Real Mode

Figure 1.2 shows the programmer’s view of the 8086 registers, all of which are 16 bits long.
The 8086 has two distinct types of registers: integer registers AX, BX, CX, DX, and pointer
registers SI and DI. The integer registers can be used for local storage of variables, and
the pointer registers store addresses in memory. The 8086 instruction pointer IP stores the
address of the instruction that is currently being executed.

All 8086 assembly instructions operate on two operands: one source and one destination.
The destination operand is always on the left in 8086 assembly. For example, to set
the value of register AX to 5:

mov ax,5
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15 8 7 0

AH AL AX

BH BL BX

CH CL CX

DH DL DX

SI

DI

CS

DS

ES

SS

SP

IP

O D I T S Z A P C FLAGS

Figure 1.2: Registers of the 8086.

In this mov instruction, register AX is the destination, and 5 is the source. Putting the
destination on the left is similar in notation to the assignment operator (=) in higher level
languages, which would represent the same operation as follows:

ax = 5;

Example: Adding Two Numbers Together in 8086 Assembly The following exam-
ple illustrates how to add two numbers together in 8086 assembly.

1 int i = 2; // in reg ax

2 int j = 3; // in reg bx

3 i += j;� �
1 [BITS 16]

2

3 boot: ; This file starts executing here.

4

5 mov ax,2 ; ax := 2

6 mov bx,3 ; bx := 3

7 add ax,bx ; ax := ax + bx

8 hlt

9

10 times 510-($-$$) db 0 ; Skip to end of boot sector

11 db 0x55 ; Magic Numbers

12 db 0xaa ; To make disk bootable� �
In the above example, we use integer registers AX and BX to hold the values of i and j

respectively. The ADD instruction adds the two together, storing the result in destination
register AX. Source register BX is not modified by the add.
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Assembling and Running Real-Mode Programs This book assumes you are using a
Linux system to build and test your code. Like all the examples in this chapter, you can
enter the assembly listing into a text editor and compile it with nasm to produce a runnable
16-bit 8086 program:

user@system ~ $ nasm -f elf32 -F dwarf mbr.asm -o mbr.o

user@system ~ $ ld -Ttext=0x7c00 -melf_i386 mbr.o -o mbr.elf

user@system ~ $ objcopy -O binary mbr.elf mbr.img

The first command assembles the source file mbr.asm to object file mbr.o, which is a
binary object file that contains binary instruction encodings of the assembly instructions.
The second command uses the ld linker to locate the object code to address 0x7C00, creating
output file mbr.elf. mbr.elf has all the same instruction encodings as mbr.o in addition
to some extra metadata that says where the program should live in the computer’s memory.
The third command converts the ELF file to a flat binary file mbr.img, which can be booted
directly by qemu. The flat binary file is a stripped down version of the ELF file with all the
metadata removed. The flat binary contains only the instruction encodings we specified in
the assembly source file. The flat binary file mbr.img is a mini disk image with only one
sector–the master boot record–that can be loaded and emulated in 16-bit real mode using
qemu:

user@system ~ $ qemu-system-i386 -hda mbr.img

The qemu command emulates your mbr.img file on a 386 computer. Your mbr.img file is
treated as the main boot hard disk on the emulated machine. Of course it is a very small
hard disk, with only one 512-byte sector.

Loops in 8086 Assembly

As with most assembly languages, building a loop in 8086 consists of three steps: initializa-
tion, loop body, and conditional branch instructions. Let’s start with a simple example that
clears the contents of a 10-byte buffer with zeros.

Example: Filling an Array with Zeros

char buf[10];

for(int k = 0; k < 10; k++) {

buf[k] = 0;

}

� �
1 [BITS 16]

2 lea di,buf // di points to buf

3 mov bx,0 // bx is index reg

4 loop:

5 mov byte [di,bx],0 // buf[bx] := 0

6 add bx,1 // increment bx

7 cmp bx,10 // bx < 10 ?

8 jl loop // loop if bx < 10

9 hlt

10 buf:

11 db 10 dup 0xff // 10 bytes initialized to 0xff

12

13 times 510-($-$$) db 0 ; Skip to end of boot sector

14 db 0x55 ; Magic Numbers

15 db 0xaa ; To make disk bootable� �
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Instruction Condition

ja Jump if Above (Unsigned Greater Than)
jae Jump if Above or Equal (Unsigned Greater or Equal)
jb Jump if Below (Unsigned Less Than)
jbe Jump if Below or Equal (Unsigned Less or Equal)
jl Jump if Less Than (signed)
jle Jump if Less or Equal (signed)
jg Jump if Greater Than (signed)
jge Jump if Greater or Equal (signed)
je Jump if Equal
jne Jump if Not Equal

Table 1.1: Commonly used 8086 jump instructions.

In the above example, we begin with a 10-byte buffer initialized with 0xff. Lines 2 and
3 are the initialization in which we point the DI register to the beginning of the buffer and
initialize the index register BX to zero. Line 4 has a label that represents the beginning
of the body of our loop. On each round of the loop, we will jump to the loop label and
execute the body of the loop. On lines 7 and 8 we have a compare and conditional jump.
The compare instruction on line 7 checks to see if we are finished with all iterations of the
loop by comparing the value in register BX to 10. The conditional jump on line 8 jumps
back to the beginning of the loop if BX is less than 10. The most commonly used 8086 jump
instructions are shown in Table 1.1.

Example: if Blocks

int n = 5;

if(n > 4) {

n++;

}

� �
1 [BITS 16]

2 boot:

3 cmp word [n],4 ; n > 4 ?

4 jle skip_if_block ; Skip following instruction if n <= 4

5 add word [n],1 ; n++

6 skip_if_block:

7 hlt

8 n:

9 dw 5

10 times 510-($-$$) db 0 ; Skip to end of boot sector

11 db 0x55 ; Magic Numbers

12 db 0xaa ; To make disk bootable� �
In this example, we are using a conditional jump instruction to implement an if block.

The canonical form for implementing an if block in assembly is shown in the code snippet
below. First, the if condition is evaluated with a cmp instruction. After the cmp, we use a
conditional jump to skip past the body of the if block if the condition evaluates to false.
After the jmp, we write the body of the if block that will be executedd if the condition
evaluates to true.

When we convert to assembly language, we invert the sense of the if condition. In
our example, the code inside the if block will be executed if n > 4, and it will be skipped
if n <= 4. In assembly language, we tell the computer to jump past the if block in the
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event that the if condition is false (i.e. if n <= 4). When the if condition is true (i.e.
if n > 4), the computer will not take the jump, and it will continue executing code im-
mediately after the jump instruction. Conditional jumps that are not taken have no effect
on the program: instruction continue to execute in order after the untaken conditional jump.

if( condition ) { cmp X,Y

jXX condition false label

... ...

} condition false label:

int n = 5;

if( n > 4 ) { cmp [n],4

jle skip if block

n++; add word [n],1

} skip if block:

int n = 3;

if( n > 4 ) { cmp [n],4

jle skip if block

n++; add word [n],1

} skip if block:

The 8086 Stack and Calling Conventions

8086 systems use the stack to pass parameters to functions and store local variables. The
SP register points to the top of the stack, which grows downward in memory (toward lower
memory addresses) as new items are pushed. The push and pop instructions can be used to
push and pop data to the stack. The call and ret instructions are used for function calls
and returns: call pushes the return address to the stack before jumping to a function, and
ret pops the return address into the instruction pointer (IP).
Example: Calling Functions In 8086, we use the call instruction to call functions. call
pushes the return address onto the stack and jumps to the specified function. When a
function is finished executing, it uses the ret instruction to return. ret pops the return
address off the stack into the IP. The example below assumes that char *s is passed by the
caller in the SI register, and the result is returned in AX.

int strlen(char *s) {

int k = 0;

while(s[k] != ’\0’) {

k++;

}

return k;

}

Passing the parameter to strlen works well in this example, but what about functions
that take more than one or two parameters? The 8086 only has four integer registers and
two pointer registers, leaving a total of at most six registers for us to use at one time. And
some of those will be taken up by local variables and scratch storage. Clearly we need to
find a different place for local temporary storage. Main memory is the obvious choice. Next,
we discuss a data structure called a stack frame that can be used for organizing local storage
in memory.
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1 [BITS 16]

2 boot:

3 lea si,string ; Get addr of string in SI

4 call strlen ; Call strlen function

5 hlt ; Halt CPU

6 strlen:

7 mov bx,-1 ; Initialize bx

8 loop:

9 add bx,1 ; increment bx

10 cmp [si,bx],0 ; check for NULL term

11 jne loop ; loop

12 mov ax,bx ; put ret val in AX

13 ret

14 str:

15 db ’this is a string’,0 ; The string we pass to strlen

16

17 times 510-($-$$) db 0 ; Skip to end of boot sector

18 db 0x55 ; Magic Numbers

19 db 0xaa ; To make disk bootable� �
Listing 1: A simple implementation of strlen in 8086 assembly.

Stack Frames In addition to tracking a function’s return address, functions also allocate
their local variables on the stack. Like most processors, the 8086 provides some primitave
instructions for managing data on its stack: the push instruction adds a new element to the
top of the stack and pop removes an element from the top of the stack. The CPU’s stack
pointer (SP) holds the address in main memory of the last element that was added to the
stack.

Let’s rewrite the strlen function, this time using the stack to pass parameters from boot

to strlen. In boot, just before we call strlen, we will push the address of string onto
the stack instead of placing it in SI. Then, in strlen, we will retrieve the address of the
string from the stack, placing it into the SI register before we begin computing the string’s
length. Other than how we communicate strlen’s parameter from the caller to the callee,
everything else is the same. We still use the SI register to hold the address of the string
inside strlen, and we still use BX to index into the string.

The function call in this example is simple: one line 3, we push the parameter we want
to pass to strlen onto the stack. On line 4 we call strlen. Then, on line 5 after strlen
returns, we remove the parameter that we pushed from the stack. The pointer argument
that we pass to strlen is 2 bytes long, so we add 2 to the SP to remove it from the stack.
If we don’t remove parameters from the stack after function calls, the stack will just keep
growing, taking up more and more memory.

str 2 bytes
SP,BP → Return Address 2 bytes

Figure 1.3: Stack frame for strlen
in Listing 2.

Inside strlen, we need to get the function’s pa-
rameter from the stack into SI before we begin com-
puting the string’s length. But the 8086 CPU doesn’t
allow us to use the SP register directly to read from
the stack. We need to use a different register instead.
On line 9, we copy the address from the SP into the BP
register, which is used to read values from the stack.
Then, on line 10, we read the value of the parameter from the stack into SI.

Figure 1.3 shows strlen’s stack frame. Inside of strlen, the SP and BP both point to the
same place on the stack because on Line 9 we copy the value of SP to the BP. That slot on the
stack contains the return address to the caller, which was pushed by the call instruction.
Just above the return address on the stack is the parameter we passed to strlen. That
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1 [BITS 16]

2 boot:

3 push str ; Push the address of string onto the stack

4 call strlen ; Call strlen function

5 add sp,2 ; Remove the address of string from the stack

6 hlt ; Halt CPU

7 strlen:

8 mov bx,-1 ; Initialize bx

9 mov bp,sp ; Copy SP to BP

10 mov si,[bp+2] ; Read the parameter from the stack

11 loop:

12 add bx,1 ; increment bx

13 cmp byte [si,bx],0 ; check for NULL term

14 jne loop ; loop

15 mov ax,bx ; put ret val in AX

16 ret

17 str:

18 db ’this is a string’,0 ; The string we pass to strlen

19 times 510-($-$$) db 0 ; Skip to end of boot sector

20 db 0x55 ; Magic Numbers

21 db 0xaa ; To make disk bootable� �
Listing 2: XXX

parameter lives at SP+2 because the return address is 2 bytes long.

str 2 bytes
Return Address 2 bytes

BP → Caller’s BP 2 bytes
Caller’s SI 2 bytes

SP → Caller’s BX 2 bytes

Figure 1.4: Stack frame for strlen
in Listing 12 with registers saved on
the stack.

The code in Listing 2 has one problem that needs
to be fixed: the strlen function overwrites the BP, SI
and BX registers on lines 8, 9 and 10 without saving
their values. If there were important values in BP, SI
or BX, they will be overwritten. We need to save the
value of the both registers before we clobber them.
That is simple enough to do by just pushing the BP,
SI and BX onto the stack before we clobber their val-
ues. Then we can use all three registers in strlen to
refer to values on the stack and index into our string.
Immediately before strlen returns, we will pop BP,
SI and BX off the stack, restoring their original values. On a side note, we also clobber what-
ever value was in AX, but since that register is used to store strlen’s return value, there is
no need to save its old value on the stack before we clobber it. The final implementation of
the strlen function is shown in Listing 12, with an updated stack frame shown in Figure
1.4.

The process of saving copies of the registers before we overwrite them in a function is
called the function’s prologue. strlen’s prologue is on lines 8-1 of Listing 12. Restoring the
registers is called the function’s epilogue, shown on lines 19-21 of Listing lst:strlenfinal.

To make our lives easier, the 8086 implements the pusha and popa instructions that
respectively push all registers and pop all registers. Using these instructions saves both
typing and thinking. It saves typing by reducing the number of push and pop instructions
we need to write in the prologue and epilogue. It saves thinking by saving all registers on
the stack, freeing us from accounting for which registers our function is using.

Example: Passing Parameters to Functions In the 8086, parameters are passed to a
function on the stack. To call the strlen function in the previous example, we need to pass
a pointer to a string on the stack.
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1 [BITS 16]

2 boot:

3 push str ; Push the address of string onto the stack

4 call strlen ; Call strlen function

5 add sp,2 ; Remove the address of string from the stack

6 hlt ; Halt CPU

7 strlen:

8 push bp ; Stash caller’s BP on the stack

9 mov bp,sp ; Copy SP to BP

10 push si ; Stash caller’s SI on the stack

11 push bx ; Stash caller’s BX on the stack

12 mov bx,-1 ; Initialize bx

13 mov si,[bp+4] ; Read the parameter from the stack

14 loop:

15 add bx,1 ; increment bx

16 cmp byte [si,bx],0 ; check for NULL term

17 jne loop ; loop

18 mov ax,bx ; put ret val in AX

19 pop bx ; Restore BX, SI, and BP before return

20 pop si

21 pop bp

22 ret

23 str:

24 db ’this is a string’,0 ; 10 bytes initialized to 0xff

25 times 510-($-$$) db 0 ; Skip to end of boot sector

26 db 0x55 ; Magic Numbers

27 db 0xaa ; To make disk bootable� �
Listing 3: XXX

Local Variables

The stack allows us to stash and restore the contents of all the registers, freeing the registers
up for local storage within a function without needing to worry about overwriting important
values. But what about functions with lots of local variables? The 8086 only provides six
registers—four integer registers and two pointer registers—enough for trivial functions like
strlen, but lots of functions need more than six local variables.

There is also a way to use the stack for local variable storage, which allows us to have
more local variables than registers. Local variables are customarily allocated on a function’s
stack frame. Consider the max function below, which finds the maximum value in an integer
array:� �

1 int max(int *buf, unsigned int len) {

2 int maxval = -32767;

3 int k;

4 for(k = 0; k < len; k++) {

5 if(buf[k] > maxval) {

6 maxval = buf[k];

7 }

8 }

9 return maxval;

10 }� �
Listing 4: XXX

This function has two local variables: maxval and k along with two parameters passed
by the caller (buf and len). Although this function is not at risk of exhausting the 8086’s
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registers, we can use it to demonstrate how to allocate local variables on the stack. We will
allocate the maxval variable on the stack, and we will keep the array index k in register BX
as before. The stack frame for our implementation of max() is drawn in Figure 1.5. We can
access the value of the maxval variable on the stack at location BP-2. The prologue we will
use to create this stack frame is as follows:

1. push bp

2. mov bp,sp

3. sub sp,2

4. push bx

Instruction 1 saves the value of the CPU BP register on the stack so we can overwrite
it. Instruction 2 copies the SP register to the BP. The BP register is a pointer from which
all accesses to the stack frame are made—if we want to read or write the value of a local
variable or a parameter passed to the function, we use the BP register. After instruction 2,
the SP and BP registers both point to the same location on the stack. Instruction 3 subtracts
2 bytes from the SP, allocating space for the 2-byte integer maxval. Instruction 4 pushes
the value of the BX register, which allows us to overwrite it in the function without losing its
contents.

Instructions 3 and 4 cause the SP to change, but the BP continues to point to the same
slot on the stack for the remainder of the function. This is a convenient feature of the BP:
it never moves during the course of a function’s execution. The SP, on the other hand, does
move during a function’s execution. For example, if we call a function, we will push the
function’s arguments onto the stack, causing the SP register to change. If we tried to refer
to variables relative to the SP, their locations relative to the SP would change every time we
push or pop something to the stack. Since we reference all of our variables relative to the
BP, the variable’s locations relative to the BP never change.

In summary, the procedure for function calls is as follows:

1. The caller pushes the function’s arguments onto the stack in reverse order.

2. The caller uses a call instruction to jump to the function. The call instruction pushes
the return address onto the stack before jumping.

3. The function being called (the callee) pushes the BP register and copies the SP to the
BP. BP now points to the middle of the stack frame, just below the return address.

4. The callee creates space for its own local variables by subtracting from the SP the
number of bytes needed to store its locals. For example, if callee has two local int
variables, it would subtract 2× 2 = 4 bytes from the SP.

Interrupts

There are many hardware events that occur in a system that need to be dealt with immedi-
ately. Urgent events are usually triggered by I/O devices like the keyboard, mouse, network
interface, etc., and if they’re not dealt with immediately, the computer will appear laggy and
unresponsive to the user. Most CPUs offer a mechanism called interrupts to temporarily
transfer control from the application that is currently running to a function called an inter-
rupt service routine that can process data from the I/O device that caused the interrupt.
An interrupt service routine is a regular function in every sense except that it is called by
hardware, not by software. Figure 1.6 shows how the keyboard ISR is started in response to
a keypress event.
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� �
1 [BITS 16]

2 boot:

3 push 10 ; Push the length of buf onto the stack

4 push buf ; Push the address of buf onto the stack

5 call max ; Call max function

6 add sp,4 ; Remove the address of buf and length of buf from the stack

7 hlt ; Halt CPU

8 max:

9 push bp ; Prologue

10 mov bp,sp

11 sub sp,2

12 pusha

13 mov word [bp-2],-32768 ; Initialize maxval

14 mov bx,0 ; Initialize k = 0

15 mov si,[bp+4] ; Get pointer to buf in SI

16 shl word [bp+6],1 ; Multiply length of buf by 2 since each element of buf is 2 bytes long

17 max_loop:

18 mov ax,[si+bx]

19 cmp ax,[bp-2] ; Check if maxval < buf[k]

20 jl not_greater ; If maxval > buf[k], do not update maxval

21 mov [bp-2],ax ; maxval := buf[k]

22 not_greater:

23 add bx,2 ; Add 2 to index register because each element of buf is 2 bytes long

24 cmp bx,[bp+6] ; Check if we have reached end of buf

25 jl max_loop ; If not, go back to beginning of loop

26 popa ; Epilogue

27 mov sp,bp

28 pop bp

29 ret

30 buf: dw 167,99,10000,-2598,31000,32000,-31000,-6000,2000,0 ; 10 an array with 10 integers

31 times 510-($-$$) db 0 ; Skip to end of boot sector

32 db 0x55 0xaa ; Magic Numbers to make disk bootable� �
Listing 5: XXX

keyboard_isr

user_prog user_prog

User presses key

Figure 1.6: The hardware pauses the currently running program and executes an interrupt
service routine in response to a keypress event.



1.3. THE I386 PROGRAMMER’S MODEL 19

Most functions are called by software during the normal course of execution of a program.
That is, a programmer plans to call a function by saving important values from the registers
into memory and pushing the function’s parameters onto the stack.

Interrupt service routines are by definition unplanned. Since we don’t know when an
interrupt event will occur, we do not know when during a program’s execution the CPU will
invoke an interrupt service routine.

What if the application is executing some critical piece of code when the CPU takes an
interrupt? We do not want the application’s state—the register contents, the stack contents,
etc—to be disrupted by the interrupt service routine. So when an interrupt occurs, the
interrupt service routine must not modify the CPU state.

To avoid modifying the CPU state, the interrupt service routine pushes the contents of
all registers onto the stack before responding to the hardware event. Preserving the CPU
state is actually done in two phases: first, the CPU automatically pushes the return address
and the FLAGS register onto the stack before calling the ISR. Then, in software, the ISR
pushes the contents of all other registers onto the stack.

Since the 8086 has this weird segmented addressing where each 16-bit register can only
represent 64k of the 1M address space, we need to save both the CS and IP registers to record
the return address. Together, they take up a total of four bytes on the interrupt stack frame.
Figure 1.7 shows a diagram of the 8086 interrupt stack frame.

unsigned int len BP+6

int *buf BP+4

Return Address BP+2

BP→ Caller’s BP BP+0

int maxval BP-2

SP→ Caller’s BX BP-4

Figure 1.5: Stack
frame for the max

function

FLAGS

CS

SP→ IP

Figure 1.7: Interrupt
stack frame created by
the 8086 CPU.

Memory Segmentation

One problem the 8086 had was its ability to support large mem-
ories. Its 16-bit registers could only address 64kbytes of memory
(216 = 65536), which isn’t really enough to hold large programs.
The 8086 architects wanted to support 1 mbyte of memory, but
for that they would need 20 address bits—4 more than they had.

To solve this problem, they created segment registers—extra
registers that were appended to the 16-bit address registers to
hold the high-order 4 bits of a 20-bit address. Table 1.2 illus-
trates how segment regsters are combined with address registers
to form a physical address. The value in the segment register
is shifted left by 4 bits and added to the address register. The
sum becomes the 20-bit physical address that is presented to
the memory system.

Segment registers are named CS, DS, ES, SS (see Table ??).
The code segment register CS is appended to the instruction
pointer IP when fetching instructions from memory. The data
segment register DS is appended to SI and DI by default when
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fetching data with source index and destination index (SI and
DI) registers. The stack segment register SS is appended to the
stack pointer SP when reading and writing from the stack. The
extra segment register ES is not used by default, but it can be
used as an additional segment register.

A 0 0 0 DS

+ 0 1 0 0 SI

A 0 1 0 0 Effective
Address

Table 1.2: Memory segmentation
in the 8086.

The main problem with memory segmentation is ad-
dress aliasing—many combinations of SEGMENT:OFFSET

can refer to the same physical address. For example, seg-
ment 0x07C0 offset 0x0800 refers to the same address
as 0x07E0 offset 0x0000 (both generate physical address
0x7E00). Programmers of 16-bit 8086 systems had to be
very careful when generating pointers!

Memory segmentation makes programming for the
8086 processor uniquely weird, and it is widely regarded
by programmers as a blunder. But from a practical per-
spective, memory segmentation was a success because it
allowed the 8086 to support large memories with a rela-
tively simple 16-bit processor. The result was a cheap and versatile CPU (although difficult
to program).

Example: 8086 Hardcoded Terminal Output One of the cool things about the x86
PC platform is it allows us to write directly to the display with very little setup. If you’re
lazy, you can use the BIOS’s built-in terminal driver (which we talk about later in the book).
Or you can write characters directly to the screen at any location—no printf call needed.
Writing to the screen is done using video memory.

Video memory is basically just a big array in the PC’s memory map that is dedicated to
video output. Any characters you write to that array is displayed on the screen. By default,
the screen is divided into 80 columns × 24 rows of characters. Each character is represented
in video memory as 2 bytes: one byte of ASCII character and one byte of color.

Column 1 Column 2 Column 3 ... Column 80
↓ ↓ ↓ ↓

B8000 ascii color ascii color ascii color ... ascii color

B8050 ascii color ascii color ascii color ... ascii color

B80A0 ascii color ascii color ascii color ... ascii color

The character at position (1, 1) is located in the upper left corner of the screen, and row
numbers increase toward the bottom of the screen. The character at position (1, 1) lives at
address 0xB8000. The next character on the first row—at position (1, 2) lives at address
0xB8002 and so on.

Let’s write a program to draw the character a in the upper-left corner of the screen. To
do that, we’ll be writing two bytes starting at address 0xB8000. The first byte to write will
be the ASCII character (a), and the second byte will be the color to display. The color code
for gray text on black background is 0x07.

B 8 0 0 ES

+ 0 0 0 0 SI

B 8 0 0 0 Effective
Address

Table 1.3: Using the ES register
to address video memory.

The only problem is that the address of video memory
(0xB8000) is 20 bits long: bigger than the 16-bit registers
in the 8086. We’ll need to use segment registers to get the
right address. In this code, we are going to use the Ex-
tra Segment (ES) register to store the beginning of video
memory. We will put the value 0xB800 into register ES
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and use SI as the offset into video memory (depicted in
Table 1.3). When we write to ES:[SI], the store will be
done to address 0xB8000+SI. The assembly code listing
below shows how to do this in 8086 assembly.� �

1 [BITS 16]

2 boot:

3 mov ax,0xb800 ; Load ES with base of video memory

4 mov es,ax

5 mov al,’a’ ; ASCII code for the character to display

6 mov ah,0x07 ; Color code 7 = gray text on black background

7 mov word es:[si],ax

8 hlt

9 times 510-($-$$) db 0 ; Skip to end of boot sector

10 db 0x55 0xaa ; Magic Numbers to make disk bootable� �
Listing 6: Writing an a to the top left of the screen.

Even a simple operation like writing a single character
to the screen is extremely clunky in 8086 assembly. Memory segmentation makes program-
ming very painful. If only the CPU’s registers were long enough to support pointers to
any location in memory, we wouldn’t need memory segmentaiton. Next we discuss the i386’s
protected mode, which does away with memory segmentation and makes programming much
easier.

1.3.2 32-Bit Protected Mode

The x86 family’s 32-bit protected mode is an extension of 16-bit real mode that provides
wider registers and support for virtual memory. The programmer’s model of the i386 CPU is
shown in Figure 1.8. All of the 8086 registers are defined in the same way in the i386: AX is a
16-bit integer register with upper and lower halves AH and AL. The four integer registers have
extended versions EAX, EBX, ECX, EDX in the i386, each 32 bits long. Assembly instruction
opcodes (mov, add, push, etc) in protected mode are all the same as real (16-bit) mode. Since
C compilers for 32-bit protected mode are widely available, we won’t discuss the assembly
language in much detail. But in order to write an operating system for the i386, you do need
to understand a bit of the CPU’s architecture.

Global Descriptor Tables

Memory segmentation lives on in a weird way on the i386’s protected mode. But segments
in the 32-bit protected mode aren’t just simple integer offsets that get added to address
references as they were in 16-bit real mode.

1.4 Exercises

Exercise 1.1 Write a program that clears the screen by writing the space character to
every position on the terminal.

Exercise 1.2 Write a function that prints one character to an arbitrary (x, y) location on
the screen. Your function should take three inputs: (1) the character to print, (2) the x
location, and (3) the y location. Hint: you may need to use the 8086 mul instruction to
compute the offset into video memory where the character should be written.
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31 16 15 8 7 0

AH AL
EAX

AX

CH BL
EBX

CX

CH CL
ECX

CX

DH DL
EDX

DX

ESI

EDI

CS

DS

ES

SS

ESP

EIP

O D I T S Z A P C EFLAGS

Figure 1.8: Registers of the i386.



Chapter 2

x86 Boot Process

The process by which a computer loads its operating system after it powers up is called
booting—a reference to “pulling itself up by its bootstraps.” After the computer powers on,
its memory and peripherals are uninitialized. We need some software in place to set up the
peripherals—particularly the hard disk—and load the operating system from the hard disk
into memory.

The IBM PC has been produced in many variants: different CPUs, different disk con-
trollers, different display adapters, all made by different manufacturers. We cannot expect
every program that runs on the PC platform to have internal driver support for every possible
hardware device—particularly not the simple low-level bootloader. Instead, PC manufactur-
ers provide drivers for their hardware burned into ROM that all present a common interface
to the user’s software. These drivers, called the BIOS, allow programmers to access basic
hardware features without integrating complex driver functionality into their programs.

The BIOS is also responsible for reading the bootloader from the first sector of the hard
drive and passing control to it.

2.1 BIOS

The bootloader and other user code acces BIOS functions using software interrupt instruc-
tions that are handled by the BIOS. Applications call the BIOS by placing commands into
the CPU registers (AX, BX, etc) and then executing n INT instruction, which causes control
to jump to BIOS code. The BIOS reads the commands in the CPU registers and executes
the corresponding function.

The secret behind 8086 variant’s enduring success in the marketplace is compatibility.
Even today, a brand-new Intel Core i7 system with all its modern features can run programs
and operating systems that were written for IBM PCs manufactured in 1982. This might
not seem impressive, but it is extremely valuable for businesses. Companies who invest in
new PC-based hardware have never had to worry that hardware upgrades would make their
software obsolete. They can always invest in new hardware and be certain that their existing
software will continue to work. But how can Intel CPUs continue to support old software
as the hardware architecture evolves over time? The BIOS is an important part of that
compatability.

On powerup, all x86 CPU variants—even modern 64-bit variants—begin executing code
in 16-bit real mode starting at address 0xFFFF0. This is where the manufacturer-provided
BIOS lives. 16-bit real mode is a compatability mode that is supported in modern x86
CPUs to ensure that older software will continue to run on new machines. The instruction
set architecture of real mode is the same as the original 8086 CPU. This is the instruction

23
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Address Region Contents
0x00000 - 0x003FF Real Mode Interrupt Vector Table
0x00400 - 0x004FF BIOS Data Area
0x00500 - 0x07BFF Unused
0x07C00 - 0x07DFF Bootloader
0x07E00 - 0x9FFFF Unused
0xA0000 - 0xBFFFF Video RAM (VRAM) Memory
0xB0000 - 0xB7777 Monochrome Video Memory
0xB8000 - 0xBFFFF Color Video Memory
0xC0000 - 0xC7FFF Video ROM BIOS
0xC8000 - 0xEFFFF BIOS Shadow Area
0xF0000 - 0xFFFFF System BIOS

Table 2.1: BIOS memory map.

set that the BIOS and bootloader must use to load the operating system.
The BIOS is burned into ROM on the motherboard, and its first instruction lives at

address 0xFFFF0 (see Table 2.1 for the BIOS’s memory map). On powerup, the BIOS
initializes the hardware and the DRAM controller. Then it loads the first 512-byte sector
from the boot disk into RAM at address 0x7C00. This sector is called the master boot
record, and it is the first piece of user-writable code that runs.

2.2 Master Boot Record

The Master Boot Record (MBR) contains two critical components for the boot process: the
bootloader and the partition table. The bootloader is responsible for loading the operating
system from the disk into memory. The partition table tells us where on disk we can find
the filesystems. Filesystems and partitions are discussed in Chapter 5, and we will focus on
the the bootloader here.

The MBR is small—only 512 bytes. This doesn’t leave much room to write a complicated
bootloader program. Pretty much the only thing it can do is to find a real program that we
actually want to run somewhere else on the boot disk and load that program into memory.
But actually the MBR is so small that there isn’t really even enough space to implement a
proper hard disk driver, which of course is needed to read data from the disk. Fortunately,
there is a disk driver available inside the BIOS—the MBR just needs to call that driver with
the right parameters to load a real program from the disk. The MBR bootloader is a small
program that calls the BIOS to load a larger second-stage bootloader from the hard drive.

2.2.1 BIOS Driver Interface

The BIOS supports low-level drivers that can be called by programs to access hardware.
The interface between applications and the BIOS happens through software interrupts—
assembly language instructions that cause interrupts to occur. When the CPU encounters
an INT instruction, it stops executing the application code and pushes the IP and FLAGS

registers onto the stack. the CPU then reads the address of the corresponding interrupt
handler from the interrupt vector table and jumps to that address. The interrupt vector
table and corresponding interrupt handlers are installed at boot time by the BIOS, so the
handler is part of the BIOS code.

Each software interrupt handler supported by the BIOS handles a different hardware
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Offset from Start
of Sector

Memory Load
Address

Contents

0x000 0x7c00 Bootloader code
0x1be 0x7dbe Partition entry 1
0x1ce 0x7dce Partition entry 2
0x1de 0x7dde Partition entry 3
0x1ee 0x7dee Partition entry 4
0x1fe 0x7dfe Boot signature 0x55
0x1ff 0x7dff Boot signature 0xaa

Table 2.2: Layout of the 512-byte Master Boot Record

� �
1 user@system ~ $ nasm -f elf32 -F dwarf mbr.asm -o mbr.o

2 user@system ~ $ ld -Ttext=0x7c00 -melf_i386 mbr.o -o mbr.elf

3 user@system ~ $ objcopy -O binary mbr.elf mbr.img� �
driver. Generally, before the application executes a software interrupt, it will place some
command code along with additional parameters in the CPU registers that tell the BIOS
what to do. If the application needs to read data from a disk, for example, it will populate
the CPU registers with information about where on the disk it wants to read and how much
data needs to be read. When the BIOS finishes executing its interrupt handler, it uses an
RETI instruction to pop the FLAGS register and return address of the stack and return to the
application.

Below we discuss a few useful BIOS functions and give example code for calling them.
For a more complete list of all BIOS functions, search Google for Ralph Brown’s Interrupt
List.

Printing Characters to the Screen

To print a character to the terminal, you have to pass a bit of information to the BIOS.
The operation code 0x0E in register AH tells the BIOS that we want to print a character.
The ASCII code for the character to print goes in register AL. Registers BH and BL get the
BIOS page number and foreground color respectively. Listing 7 shows a complete 16-bit real
mode assembly code to create an MBR image that prints one a to the screen.

The assembly file in Listing 7 can be compiled with the commands below1.

1A complete explanation of these compilation commands is given in §1.3.1

� �
1 user@system ~ $ qemu-system-i386 -hda mbr.img

2

3 SeaBIOS (version 1.16.3-debian-1.16.3-2)

4

5

6 iPXE (https://ipxe.org) 00:03.0 CA00 PCI2.10 PnP PMM+06FCAF60+06F0AF60 CA00

7

8

9

10 Booting from Hard Disk...

11 a� �
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Register Meaning

AH Command Code 0x0E
AL Character to write
BH Page number (usually 0)
BL Foreground color (7 for gray text)

Table 2.3: Parameters passed to the BIOS print command INT 0x10

� �
1 [BITS 16]

2

3 boot: ; This file starts executing here.

4 mov al,’a’

5 mov ah, $0xe
6 mov bh,0 ; Page 0

7 mov bl,7 ; Foreground color 7 (gray)

8 int 0x10 ; Call the BIOS, print char in AL

9 done:

10 jmp done ; Spin loop after character prints

11

12 times 510-($-$$) db 0 ; Skip to end of boot sector

13 db 0x55 ; Magic Numbers

14 db 0xaa ; To make disk bootable� �
Listing 7: Assembly code to create a master boot record image that prints the character ’a’
to the screen.

Getting a Keystroke from the Keyboard

Probably the simplest BIOS call is requesting a keystroke from the keyboard. This call just
hangs until the user presses a key, then it returns with the ASCII code for the keypress in
register AL. To call the Get Keystroke function in the BIOS, just put the value 0 in register
AH then execute an INT 0x16 instruction:

[BITS 16]

boot: ; This file starts executing here.

mov ah,0

int 0x16 ; This instruction will hang until you press a key.

; On key press, BIOS returns with AL = ASCII code

hlt

times 510-($-$$) db 0 ; Skip to end of boot sector

db 0x55 ; Magic Numbers

db 0xaa ; To make disk bootable

You can compile and run the program above using nasm and qemu as discussed in Section
1.3.1. This program will not make any kind of visual display because we haven’t told it to
print anything. In the next example, we discuss how to print characters to the screen by
calling the BIOS.
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Figure 2.2: Layout of sectors on a disk.

Reading from the Disk

Before we talk about how to read from the disk, we need to discuss how data is organized
on disks.

Sectors, Cylinders and Heads You’re probably used to storing data on disks in files,
but those are higher level abstractions provided by the operating system. At the most basic
level, a disk is a block device that allows us to store information in blocks of 512 bytes.
That’s it.

Sector

Cylinder

Figure 2.1: Geometry of a magnetic
hard disk. Sectors are arranged in
concentric circles called cylinders.

Figure ?? shows the layout of 512 byte sectors on a
disk. In each sector, we can write any 512-byte block
of data we want. If we want to store larger blocks
of data, they have to be split across multiple sectors.
Later, when we want to read the data back, we just
need to remember what sectors our data lives in.

Reading from the disk can be a little challenging.
We need to tell the BIOS (1) the disk read command,
(2) where we want to read from on the disk, (3) where
we want the data to go in memory, and (4) how much
data to read. For (1), the disk read command 0x02
goes in register AH. For (2), we need to specify a sector
on the disk to read. The disk is addressed in cylinder,
head, and sector numbers. Confusingly, cylinder and
head indexes start at 0, and sector indexes start at 1. So the first sector on the disk in C:H:S
notation is 0:0:1. The first hard disk number is 0x80. For (3), we need to give a complete
20-bit address (segment and ofset) where we want the data from disk to be stored in memory.
This is given to the BIOS in registers ES:BX. For (4), we need to tell the BIOS how many
512-byte sectors it should read from disk (passed in AL). Finally, call the BIOS with INT
0x13 to initiate the disk read.

Register Meaning

AH Command Code 0x02
AL Number of sectors to read
ES Segment address where data should be written
BX 16-bit offset into ES to write data to
CH Low 8 bits of cylinder number
CL Sector number
DH Head number
DL Drive number (0x80 is the first hard disk)

Table 2.4: Parameters passed to the BIOS disk read command INT 0x13.

The BIOS disk read functionality only allows us to read individual sectors from a disk
into memory. It has no support for filesystems—that’s usually handled by the operating
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system.

2.2.2 DOS

In the early days of PCs, the commonly-used “operating system” was called Disk Operating
System (DOS). DOS was not really an operating system in the usual sense. It was more like
a set of extensions to the PC BIOS. The most useful support it provided above the BIOS
was support for file systems and a rudimentary terminal interface. The BIOS, after all, can
only read and write individual sectors from a disk—it doesn’t have support for creating files
with names and locating those files on disk.

In those days, the most common form of storage was floppy disks, which could hold 720
kbytes or 1.44 mbytes of data depending on the disk type. Programs had to be small to fit
on a disk, and computers could only run one program at a time. A program would be loaded
off of its floppy disk into main memory, and it would use INT instructions to call BIOS or
DOS functions.

For example, suppose a program calls the C library’s fopen to open a file on disk. The C
library would parse the file name and generate a file control block data structure from the file
path passed to fopen. It would then call DOS’s INT 0x21 function, which is a DOS-specific
extension to the BIOS. DOS would examine the file control block and use its file system
driver to locate the data sectors of the file on the disk. The DOS file system driver would
make calls to the BIOS disk read function using calls to INT 0x13.

2.3 GRUB

We only have one disk sector—512 bytes—for the MBR. There is not enough space in the
MBR to store a complete bootloader that would be capable of loading a full kernel into
memory. The bootloader usually needs lots of software to read the kernel from the disk:
disk drivers, filesystem drivers, terminal drivers at least. PCs use a larger stage 1 bootloader
to load the kernel from the disk. For the most part, each operating system has a custom
bootloader. Linux uses a bootloader called GRUB (the GRand Unified Bootloader) which
we will also use to load our kernel.

GRUB does a lot of dirty work for us: it configures hardware, loads our kernel from
disk into memory, and most importantly it puts the CPU into protected mode. Putting the
CPU into protected mode is not a fun job: it requires setting up a bunch of messy tables in
memory

2.3.1 Partitions

Physical hard disks are often divided into smaller sections called partitions which can be used
to separate different kinds of information. Commercial operating systems like Windows and
macOS generally create several partitions on the computer’s main hard disk, the largest of
which is used to store OS and user files. One or more smaller partitions store system and
backup information that is generally hidden from the user’s view. A data structure inside
the MBR stores the location and size of the disk’s partitions.

2.3.2 Binary File Formats

2.3.3 GRUB Hello World

Let’s write a Hello World program that can be loaded and run by GRUB. The overall
procedure we will follow is to create a disk image with an empty filesystem, install GRUB
on the image, then copy our program to the filesystem. A disk image is a file that contains
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GRUB Code Start of Partition 1
MBR ... ...

0 1 2 3 2048 2049 2050

Figure 2.3: Layout of the disk image we will create for the GRUB hello world.

a byte-for-byte copy of the contents of some disk. Disk images are useful for replicating
OS installations—fresh installations of operating systems are usually done from disk images.
Virtual machines also use disk images to store the contents of their virtual disks. Throughout
this book, we will be creating disk images from scratch which we will use to boot our operating
system.

We said before that hard disks are laid out as sectors of 512 bytes. The disk image that
we create will also be organized in 512 byte blocks. A diagram of the disk image is shown
below. The first 2048 sectors of the disk image (2048× 512bytes = 1Mbyte)will be assigned
to the MBR and bootloader (GRUB). The first 2048 sectors are not part of any filesystem,
so they can’t store files in the way we are used to. Instead, they store the raw code of the
bootloader loaded into memory by GRUB at boot time.

The first partition starts at sector 2048 and contains a FAT filesystem. FAT is a simple
filesystem format developed for MS-DOS in the 1980s. We will be using it later in the book
to store files for our operating system. For now, we will use the FAT filesystem to store the
binary file for our hello world program.

The binary file that contains our program needs to have some special format to be
recognized by GRUB. Its header is different from the standard ELF header used by Linux
programs. GRUB expects our binary file to have a multiboot header which has fields that
are similar to the ELF header. Other than the multiboot header, the rest of the binary file
is the same. Fields in the Multiboot 2 header are explained in Table ??.

Field Name Meaning

Magic Number The integer 0xe85250d6 that tells GRUB that our binary is valid.
Flags Binary-valued flags that tell GRUB what kind of data is contained in this multiboot2 entry.
Length Length in bytes of this multiboot2 entry
Checksum Integer to ensure that this multiboot2 entry has not been corrupted. The sum of all entries in the entry (including the checksum) should be 232.

Table 2.5: Fields in the Multiboot 2 header.

First, we will compile and link the C program. If you are compiling on an Intel or AMD
x86 system, use the native compiler called gcc. If you are cross-compiling on a non-x86
system like an Apple M1 or other ARM device, use an x86 cross-compiler.

The compiler switches we use to build the kernel in this book tell the compiler to generate
code for the i386 CPU using no external libraries. Most of the time when we compile
programs, we want the compiler to bring in code from external libraries, which allow us to
make calls to functions like printf. But those libraries assume that the program is running
in an operating system. Since we are writing the operating system ourselves, we don’t want
to include those external functions. If we need them, we will have to write our own versions
that don’t depend on Linux syscalls.

user@system ~ $ gcc -c -ffreestanding -mgeneral-regs-only -mno-mmx -m32 -march=i386 -fno-pie -fno-stack-protector -g3 -Wall hello.c

user@system ~ $ ld --section-start=.text=100000 --section-start=.rodata=0 -e main -melf_i386 hello.o -o hello

Before we get started, let’s install the mtools package, which contains tools for editing
filesystems that are inside disk images without directly mounting them.
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1 #define MULTIBOOT2_HEADER_MAGIC 0xe85250d6

2

3 const unsigned int multiboot_header[] = {MULTIBOOT2_HEADER_MAGIC, // Magic number

4 0, // Flags

5 16, // Length

6 -(16+MULTIBOOT2_HEADER_MAGIC), // Checksum

7 0, // Type

8 12}; // Size

9

10 void main() {

11 unsigned short *vram = (unsigned short*)0xb8000; // Base address of video mem

12 const unsigned char color = 7; // gray text on black background

13 vram[0] = (((unsigned short)color)<<8) | (char)’H’;

14 vram[1] = (((unsigned short)color)<<8) | (char)’E’;

15 vram[2] = (((unsigned short)color)<<8) | (char)’L’;

16 vram[3] = (((unsigned short)color)<<8) | (char)’L’;

17 vram[4] = (((unsigned short)color)<<8) | (char)’O’;

18

19 while(1);

20 }� �
Listing 8: The code for GRUB Hello World.

user@system ~ $ sudo apt install mtools

Now we will create a 32 mbyte disk image called rootfs.img filled with zeros. The dd

tool copies data in blocks from one file to another. It’s kind of like cat for binary files. Here
we are using it to copy from /dev/zero, which is a fake file that just reads the binary value
0. The output will be a new disk image file that we are creating called rootfs.img filled
with 32 mbytes of binary 0.

user@system ~ $ dd if=/dev/zero of=rootfs.img bs=1M count=32

set timeout=5

set default=0 # Set the default menu entry

menuentry "Hello Grub" {

set root=(hd0,msdos1)

multiboot2 /hello # Load our hello grub program into memory

boot # Run hello grub

}

Next we will create the GRUB image, a file that contains the GRUB code to be copied
to the first megabyte of our disk image. In Figure ??, we drew the GRUB code as starting
at sector 1 and occupying up to sector 2047. The GRUB image does not include the MBR
(that’s in a separate file). The command below creates grub.img, which will be copied to
our disk image starting at sector 1.

user@system ~ $ grub-mkimage -p "(hd0,msdos1)/boot" -o grub.img -O i386-pc normal biosdisk multiboot multiboot2 configfile fat exfat part_msdos

Now that we have a GRUB image, we can copy it to our disk image using dd. The first
command below copies the MBR to sector 0 of our disk image. The MBR is stored in a
512-byte binary file on our Linux system called boot.img. The second command copies the
grub image, which we created in the previous setp, to the disk image starting at sector 1.
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user@system ~ $ dd if=/usr/lib/grub/i386-pc/boot.img of=rootfs.img conv=notrunc

user@system ~ $ dd if=grub.img of=rootfs.img conv=notrunc seek=1

Before we install our Hello Grub program onto our disk image, we need to format the
image. Formatting is the process of setting up a partition table and a filesystem on a disk
or disk image. We will only create one partition on the disk image: starting at sector 2048
and occupying all sectors to the end of the disk .

user@system ~ $ echo ’start=2048, type=83, bootable’ | sfdisk rootfs.img

Create a FAT16 filesystem on the first partition (starting at sector 2048) and copy our
hello world binary to that filesystem.

user@system ~ $ mkfs.vfat --offset 2048 -F16 rootfs.img

user@system ~ $ mcopy -i rootfs.img@@1M hello ::/

user@system ~ $ mmd -i rootfs.img@@1M boot

user@system ~ $ mcopy -i rootfs.img@@1M grub.cfg ::/boot

If all these commands worked, you should have a bootable disk image that can be used
as a virtual disk for the qemu emulator. Use the command below to start the emulator and
run your program in GRUB.

user@system ~ $ qemu-system-i386 -hda rootfs.img

2.3.4 Linker Scripts

In the previous section, we designed Grub Hello World to be a simple single-file C program
which contained all of the components that Grub needs to boot an OS. We used a cheap
hack to locate the multiboot header at address 0: we declared it as a const unsigned int

array, and we told the linker to place all const variables (which live in the rodata section of
the ELF file) at address 0. Our trick is fine for a small kernel, but we need a more scalable
solution that will work for larger codebases.

Linker scripts allow us to specify how our binary is assembled and what address is assigned
to its various components. As we discussed, every ELF file is composed of sections: the
.text segment stores code, the .data segment stores initialized values of global variables,
the .rodata segment stores constant data, and so on. Table ?? lists common default section
names and their uses.

Section Name Contents

.text Program code

.bss Uninitialized global variables

.data Initialized global variables

.rodata Constant data

Compiling Hello Grub was clunky
because we had to specify the address
of each segment on the command line.
Linker scripts let us specify the address
of each section in a separate file, which
gives us more control over the compila-
tion. Listing 10 shows a simple linker
script that is equivalent to the command
line switches we used to compile Hello Grub.

Custom Sections In addition to the standard ELF sections from Table ??, we can define
custom ELF sections for certain variables. For example, suppose we want to create a separate
ELF section for the multiboot header:� �
1 const unsigned int multiboot_header[] __attribute__((section(".multiboot"))) =

2 {MULTIBOOT2_HEADER_MAGIC, // Magic number

3 0, // Flags
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1 ENTRY(main) /* Name of the first function to run */

2 OUTPUT_FORMAT(elf32-i386) /* Specify ELF file format */

3

4 SECTIONS

5 {

6 . = 0; /* Set current location to address 0 */

7 .rodata : { *(.rodata) } /* Place .rodata section at address 0 */

8 /* Begin putting sections at 1 MiB, a conventional place for kernels to be

9 loaded at by the bootloader. */

10 . = 1M;

11 .text : { *(.text) } /* Place .text starting at 1M (0x100000) */

12 .data : { *(.data) } /* Place .data immediately after .text */

13 .bss : { *(.bss) } /* Place .bss section immediately after .data */

14 }� �
Listing 9: Simple linker script for GRUB Hello World.

4 16, // Length

5 -(16+MULTIBOOT2_HEADER_MAGIC), // Checksum

6 0, // Type

7 12}; // Size� �
The attribute ((section(".multiboot"))) instructs the compiler to place the

multiboot header array in a separate section called .multiboot. This is a nonstandard
extension to the C language provided by gcc. We can modify our linker script to place the
.multiboot section at address 0:� �

1 ENTRY(main) /* Name of the first function to run */

2 OUTPUT_FORMAT(elf32-i386) /* Specify ELF file format */

3

4 SECTIONS

5 {

6 . = 0; /* Set current location to address 0 */

7 .multiboot : { *(.multiboot) } /* Place only the multiboot header at address 0 */

8 /* Begin putting sections at 1 MiB, a conventional place for kernels to be

9 loaded at by the bootloader. */

10 . = 1M;

11 .text : { *(.text) } /* Place .text starting at 1M (0x100000) */

12 .data : { *(.data) } /* Place .data immediately after .text */

13 .rodata : { *(.rodata) } /* Place .rodata immediately after .data */

14 .bss : { *(.bss) } /* Place .bss section immediately after .rodata */

15 }� �
Listing 10: A better linker script for GRUB Hello World that places only the multiboot
header at address 0.

2.4 Exercises

Exercise 2.1 Write a Makefile that builds your Hello Grub program.

Exercise 2.2 Write a program that prints the character a to the screen repetitively. Fill
up the whole screen with as.

Exercise 2.3 Write a delay function that causes your program to hang for a short amount
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of time. You can use a for loop. Modify your program from Exercise 2.2 to call your delay
function and hang each time it prints the character a.

Exercise 2.4 Write a function that can print a string to the screen by writing to video
memory. The inputs to your function should be the string to print and the (x, y) location
on the screen to start printing:

void print string(char *string, unsigned int x, unsigned int y)

Exercise 2.5 Modify your print string function from Exercise 2.4 to implement a com-
plete terminal output driver. Your driver should keep track of the screen position where it
last wrote a character. Each successive call to print string should display characters to
the terminal immediately after the last character that was printed without the need for the
programmer to specify a screen location.

void print string(char *string)

Exercise 2.6 Modify your terminal driver from 2.5 to scroll the text on screen once the
cursor goes past the end of the screen.
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Chapter 3

Input and Output

Computers use input and output ports to interact with the outside world:

• Disk drives

• USB ports

• Network interfaces

• Display adapters

• Audio interfaces

• Timers

In this chapter, we discuss ways in which the computer communicates with its I/O devices
and how it presents information from those devices to user programs.

3.1 Hardware I/O Connections

The x86 PC has two mechanisms for connecting IO devices to the CPU. Legacy IO connects
directly to the CPU through an IO-specific hardware bus. Modern IO connects to the CPU
through the memory system. Figure 3.1 shows a diagram of the interconnections of the IO
on an x86 PC.

3.2 Communicating with I/O Devices

There are several mechanisms that the kernel can use to communicate with hardware I/O
devices.

3.2.1 Memory-Mapped I/O

The concept of memory-mapped I/O is that the hardware assigns a particular address in
memory to a hardware device. Reads and writes to a memory-mapped I/O address do not

Video Output

As we discussed in §2.2.1, the PC’s video RAM is located at address 0xB8000. We can display
characters on the screen by writing their ASCII values to the video RAM. Each character
position on the screen is controlled by two bytes: one ASCII byte that controls the character
to be displayed, and a second byte that specifies what color the character should be.

35
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CPU Memory

PCIe Controller

SATA Controller

USB Controller

Keyboard Controller

Programmable Interrupt Timer

ATA Controller

Legacy IO Devices Modern IO Devices

Video Controller

Figure 3.1: Interconnections between the CPU, memory, and IO devices on an x86 PC
system.

Column 1 Column 2 Column 3 ... Column 80
↓ ↓ ↓ ↓

B8000 ascii color ascii color ascii color ... ascii color

B8050 ascii color ascii color ascii color ... ascii color

B80A0 ascii color ascii color ascii color ... ascii color

x86 PS/2 Keyboard Controller

I/O Port Access Type Function
0x60 R/W Data Port
0x64 R Status Register
0x64 W Command Register

PS/2 Status Register The PS/2 status register contains information about the state of
the PS/2 controller. A detailed description is shown in Table 3.2.1. The important bit for
taking input from the keyboard is OS, the output status bit. That bit will be set to 1 if there
is data available from the keyboard and cleared to 0 of no data is available. If OS is set (1),
we can read the data port to get a scancode from the keyboard.

7 6 5 4 3 2 1 0
PE TOE UNK UNK CD SF IS OS
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PE Parity Error 0 indicates no error, 1 indicates error
TOE Timeout Error 0 indicates no error, 1 indicates error
UNK Chipset Specific
UNK Chipset Specific
CD Command/Data 0 indicates data written to input buffer is data

for PS/2 device, 1 indicates data written to
input buffer is data fro PS/2 Controller

SF System Flag Set by BIOS if system passes self test (POST)
IS Input Buffer Status 0 means empty, 1 means full
OS Output Buffer Status 0 means empty, 1 means full

Reading and Writing to IO Ports on x86 On x86, we have two special instructions
to communicate with IO ports: in and out.

To determine if the user pressed a key, we want to read the PS/2 status register and
check the LSB. If the LSB is 1, then that means that means that the PS/2 controller’s
output buffer contains a scancode. To get the scancode, read from IO port 0x60.

.lp:

in ax,0x64 ; Get keyboard status reg

and ax,1

je .lp ; If LSB in status is clear, no key

in al,0x60 ; Get scancode

mov ah,0

push ax

call print_hex_16 ; Print the scancode

add sp,2

jmp .lp ; Check for another keypress

Instead of implementing our keyboard echo program in assembly, we can use inline as-
sembly inside of a C program to use an in instruction to read from the PS/2 controller.

� �
1 /*

2 * outb

3 *

4 * Performs a one-byte write to an x86 port.

5 */

6 void outb(uint16_t _port, uint8_t _data) {

7 __asm__ __volatile__ ("out %1, %0" : : "dN" (_port), "a" (_data));

8 }

9 /*

10 * inb

11 *

12 * Performs a one-byte read from an x86 port.

13 */

14 uint8_t inb (uint16_t _port) {

15 uint8_t rv;

16 __asm__ __volatile__ ("inb %1, %0" : "=a" (rv) : "dN" (_port));

17 return rv;

18 }� �
Listing 11: An inline assembly impelmentation of the in and out instructions.
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x86 Programmable Interval Timer (PIT)

� �
1 #define PIC_PIT_CHANNEL_0_DATA 0x40

2 #define PIC_PIT_CHANNEL_1_DATA 0x41

3 #define PIC_PIT_CHANNEL_2_DATA 0x42

4 #define PIC_PIT_MODE_CMD_REG 0x43

5

6 void programPIT(uint16_t reload_val) {

7 outb(0x34, PIC_PIT_MODE_CMD_REG);

8 outb(reload_val & 0xff, PIC_PIT_CHANNEL_0_DATA); // Set reload val low byte

9 outb((reload_val>>8) & 0xff, PIC_PIT_CHANNEL_0_DATA); // Set reload val hi byte

10 }

11

12 uint16_t readPitCount() {

13 uint16_t count;

14 outb(0, PIC_PIT_MODE_CMD_REG); // Send latch count value command for channel 0

15 count = inb(0x40); // Read latched value (Lo byte)

16 count |= inb(0x40)<<8; // Read latched value (Hi byte)

17 return count;

18 }� �
Listing 12: A simple interface to the x86 PIT that writes its reload value and reads the
current count.

3.3 Polling I/O

Register Name I/O Ad-
dress

PIT Channel 0 Data 0x40

PIT Channel 1 Data 0x41

PIT Channel 2 Data 0x42

PIT Mode & Command Register 0x43

Table 3.1: Registers of the x86 PIT

Like the x86 PIT, most I/O devices have
some status register that allows low-level
software to request information about the
status of the hardware device. The simplest
way to interact with I/O devices is by re-
peatedly polling that status register, check-
ing if some event has taken place. For ex-
ample, we might write a delay function that
continuously calls readPitCount() until the
count reaches some threshold value:� �

1 void delay(int n) {

2 while(readPitCount() < n);

3 }� �
This kind of function was pervasive in antique video games to control the screen refresh

rate. It was usually part of a larger game loop such as the following:� �
1 void game_loop() {

2 while(1) {

3 int scancode = read_keyboard(); // Get keyboard input

4 int mouse_position = read_mouse(); // Get mouse input

5 update_sprite(scancode, mouse_position); // Move sprites according to keyboard input

6 draw_screen_buffer();

7 delay(2000);

8 }

9 }� �
On each round of the game loop, it (1) reads the input from the keyboard and mouse,

(2) updates the state of the game’s characters, and (3) redraws the screen buffer. The
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delay function serves to slow down the game loop and prevent the gameplay from moving
too quickly. The keyboard and mouse are polled on each round of the loop, and the I/O
polling burns a substantial number of CPU cycles. Polling one or two I/O devices might be
manageable, but it does not scale well for a large number of I/O devices.

Exercise 3.1 Augment your Hello Grub program with an infinite loop that polls the PS/2
keyboard controller and displays the scancodes on the screen. On each round of the loop, it
should (1) read scancodes from the keyboard and (2) print the scancode out to the terminal
in decimal.

Exercise 3.2 Modify the program from Exercise 3.1 to print the ASCII characters from
the keyboard. The keyboard map below can be used to translate a keyboard scancode
into a corresponding ASCII character. For example, suppose the user presses the 3 key
on the keyboard. This will send scancode 4 to the PS/2 controller. We can look up the
corresponding ASCII character: keyboard map[4] = ’3’.

� �
1 unsigned char keyboard_map[128] =

2 {

3 0, 27, ’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’, ’8’, /* 9 */

4 ’9’, ’0’, ’-’, ’=’, ’\b’, /* Backspace */

5 ’\t’, /* Tab */

6 ’q’, ’w’, ’e’, ’r’, /* 19 */

7 ’t’, ’y’, ’u’, ’i’, ’o’, ’p’, ’[’, ’]’, ’\n’, /* Enter key */

8 0, /* 29 - Control */

9 ’a’, ’s’, ’d’, ’f’, ’g’, ’h’, ’j’, ’k’, ’l’, ’;’, /* 39 */

10 ’\’’, ’‘’, 0, /* Left shift */

11 ’\\’, ’z’, ’x’, ’c’, ’v’, ’b’, ’n’, /* 49 */

12 ’m’, ’,’, ’.’, ’/’, 0, /* Right shift */

13 ’*’,

14 0, /* Alt */

15 ’ ’, /* Space bar */

16 0, /* Caps lock */

17 0, /* 59 - F1 key ... > */

18 0, 0, 0, 0, 0, 0, 0, 0,

19 0, /* < ... F10 */

20 0, /* 69 - Num lock*/

21 0, /* Scroll Lock */

22 0, /* Home key */

23 0, /* Up Arrow */

24 0, /* Page Up */

25 ’-’,

26 0, /* Left Arrow */

27 0,

28 0, /* Right Arrow */

29 ’+’,

30 0, /* 79 - End key*/

31 0, /* Down Arrow */

32 0, /* Page Down */

33 0, /* Insert Key */

34 0, /* Delete Key */

35 0, 0, 0,

36 0, /* F11 Key */

37 0, /* F12 Key */

38 0, /* All other keys are undefined */

39 };� �
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3.4 Interrupt-Driven I/O

Programs that use polling to interact with I/O devices waste a lot of time checking the status
registers of various input devices. Interrupts are a mechanism that the hardware can use to
notify the program when an input event occurs so the software doesn’t have to continuously
poll status registers.

When an input event occurs, the CPU interrupts the software that is currently running,
saving the contents of some of its registers on the stack. The CPU then automatically jumps
to an interrupt service routine (ISR)—a special function that handles the hardware event.
Once the interrupt service routine finishes, it can return to the original code that was running
before the interrupt occured.

Each hardware device on a computer has a designated interrupt service routine. The
ISR that handles a keyboard interrupt is different from the one that handles events from the
system timer or the hard disk.

When an interrupt occurs, the hardware saves the running program’s context on the
stack. The context is basically just the set of critical information that the CPU will need
to save so it can correctly resume executing the program after the ISR completes. At a
minimum, the CPU context consists of (1) the program’s instruction pointer (IP) and (2)
the program’s FLAGS register.

3.4.1 The Interrupt Descriptor Table

3.4.2 Masking Interrupts

3.5 Direct Memory Access

3.6 Interfacing to User Programs

A clean interface from user program to I/O device is one of the most important features
an operating system can provide. Operating systems provide a runtime environment that
makes each program think that it has complete and exclusive access to the entire system. Of
course this cannot be so for I/O devices: most need to be shared by many programs on the
computer. So it is a challenge for the OS designer to present users with an easy-to-use virtual
interface to all the system’s hardware devices while allowing multiple running programs to
share hardware resources.

Consider your laptop’s video display interface, which obviously must be shared among
multiple programs at once. Operating systems generally implement access to the display by
isolating each application within its own window. How should the application communicate
to the operating system what to draw inside its window? There are generally two ways in
which operating systems support graphical interfaces:

• Operation-specific APIs: the OS provides a specific API for all common tasks,
including drawing text, drawing clickable buttons, displaying lists and menus, and so
forth. Each API has an operation-specific interface defined by the OS. An API to draw
text requires a specific set of inputs and outputs. Different inputs and outputs might
be used to place a clickable button.

• Virtualized screen buffer: the OS allows the app to write directly to a virtual
screen buffer. Any data drawn to the screen buffer will appear in the app’s window.
Drawing a button requires the programmer to set the color in the virtual screen buffer
of every pixel on the button. There are no operation-specific APIs—those must be
implemented by the app or in an external library.
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Which technique is better? It is hard to find anything positive to say about operation-
specific APIs, although most (all?) operating systems use them. They are not regular: since
each type of visual primitive (button, text, etc.) needs different information to draw, there
must be a different interface for every primitive. And because most OSes provide lots of
options to app developers, their APIs are in practice not simple—developers need to know
a lot of details about how to call each API, which means reading lots of documentation.

• Regularity: if you do something one way for one kind of I/O device, you should do it
the same way for a different kind of I/O device. Predictability in the interface makes
the operating system easy to use.

• Simplicity: Don’t make your user read thousands of pages of documentation in order
to interact with your driver.

3.6.1 Privilege

Since many programs share I/O devices on the computer, we don’t want one particular
program to be allowed to directly control the I/O hardware. Imagine if only one program
was allowed to control your computer’s network interface—only that program would be
capable of sending and receiving packets while all other programs would be cut off. In that
scenario, you could have a web browser open or a video conferencing app, but never both at
the same time.

Worse yet, imagine if multiple programs were allowed to directly control hardware in-
terfaces simultaneously. When the web browser received a packet intended for the video
conferencing app, it would have no idea how to handle that packet.

To avoid problems, programs running on a computer are not allowed to directly access
the hardware I/O devices. Dealing with the hardware I/O is the job of the operating sys-
tem. Access to hardware resources on the computer is mediated by the notion of privilege.
Privileged software (like the operating system) is allowed to directly read and write from
just about any hardware device on the computer. Unprivileged software (like user programs)
is only allowed to read and write to a small portion of the computer’s memory that is des-
ignated for use by that program. If a user program wants to access a hardware device, it
needs to call the operating system’s API for that device. The OS—acting as an intermedi-
ary between the program and the hardware device—will access the hardware I/O device on
behalf of the requesting program and return the desired information.

A program’s privilege level is set by the state of the CPU. While the CPU is in privi-
leged mode, it can execute any instruction and access any address in memory—privileged
or unprivileged. When the CPU is in unprivileged mode, it can only execute unprivileged
instructions and access unprivileged memory. The CPU privilege level is determined by the
IOPL bits in the FLAGS register.

3.7 Exercises

Exercise 3.3 Write a Makefile that builds your Hello Grub program.
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Chapter 4

Memory Management

4.1 Memory Allocation

The goal of a memory allocator is to keep track of which memory is free and which memory
is in use. When some program (either the kernel or a userland program) needs memory, the
memory allocator finds a block of free memory that is large enough to satisfy the request,
marks that memory as in-use, and returns the address of the beginning of that memory
block.

You will need to implement one of the memory allocators described in this chapter for
your operating system. The first fit and buddy allocators are preferable because they are
the most flexible designs.

Why do we Need Memory Allocators? Simple programs that we write well-defined
tasks generally know what their memory requirements will be at compile time and therefore
don’t need memory allocators. For example, consider a trivial program that counts the
number of characters in a pre-defined block of text:� �

1 #include <stdio.h>

2 char text[] = "the quick brown fox jumped over the lazy dog";

3

4 int main() {

5 int count = 0;

6 while(text[count] != 0) {

7 count++;

8 }

9 printf("Character count is %d\n", count);

10 return 0;

11 }� �
Listing 13: A simple program that counts the number of characters in a pre-defined block of
text

In this program, we know the dataset we are operating on at compile time. In other
words, the input dataset (char text[]) is integrated into the program’s binary. Since the
compiler knows what the input datset will be, it can build the dataset into the program’s
binary. When the operating system runs the program, it will load the program’s binary
image from disk into memory, and that image will contain the program’s input dataset—no
memory allocation needed.
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Now suppose we want to make our program more flexible by enabling it to count the
number of characters in a file on disk. The program will take a filename as input from the
user, open that file, read the file into memory, and count the number of characters. In this
case, we don’t know the size of the input dataset until we run the program. Since we need
to read the input dataset from a file and we won’t know how big the file is until we open it,
we can’t reserve memory for the dataset at compile time.

One simple workaround might be to restrict the maximum size of the input dataset. We
could allocate a large array at compile time, then insist that the dataset is never larger than
our buffer, as in Listing 14. This approach works for small files, but not for files larger than
4kbytes.� �

1 #include <stdio.h>

2 #include <fcntl.h>

3 #include <unistd.h>

4 char text[4096]; // Large buffer

5

6 int main(int argc, char **argv) {

7 int fd = open(argv[1], O_RDONLY);

8 int n = read(fd, text, sizeof(text));

9 int count = 0;

10 while(text[count] != 0) {

11 count++;

12 }

13 printf("Character count is %d\n", count);

14 return 0;

15 }� �
Listing 14: A simple program that counts the number of characters in a file, limited to 4096
characters.

To make our program flexible so it works with files of any size, we need dynamic memory
allocation. Our strategy will be to (1) open the file, (2) find out how large it is, then (3)
allocate a buffer that will hold the entire file. A demonstration of this approach is shown in
Listing 15.

The first call to lseek() returns the length of the file in bytes. To read the entire file
into memory, we need to have an array at least of that length. The malloc() call requests
a block of memory that is large enough to accomodate the whole file. malloc() returns
the memory address of the beginning of the allocated block. This block is then filled up by
read() with the file contents.

In an operating system, there are many scenarios where we need to dynamically allocate
memory, and we need some function like malloc that can keep track of what memory on the
computer is available for allocation. Our operating system will need to have a custom stan-
dalone memory allocator—malloc() isn’t an option for us because it relies on underlying OS
functionality that we haven’t built yet. This section discusses techniques for implementing
standalone memory allocators.

4.1.1 The Brain Dead Memory Allocator

The brain dead memory allocator starts with a large block of free memory called the heap.
All memory requests will be satisfied from the heap. The brain dead allocator maintains a
pointer to the beginning of free memory, which initailly is set to the base of the heap as in
Figure 4.1a. The allocator satisfies memory requests starting at the beginning of the heap by
incrementing the freeptr by the amount of memory requested then returning the starting
address of the newly allocated block.
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1 #include <stdio.h>

2 #include <fcntl.h> // needed for open()

3 #include <unistd.h> // needed for read()

4 #include <stdlib.h> // needed for malloc()

5

6 int main(int argc, char **argv) {

7 int fd = open(argv[1], O_RDONLY);

8 int fsize = lseek(fd, 0, SEEK_END); // Seek to end of file.

9 // Returns the offset from beginning of file

10

11 lseek(fd, 0, SEEK_SET); // Reset the seek pointer to beginning of file

12

13 char *text = malloc(fsize); // Allocate a buffer big enough to hold file

14 int n = read(fd, text, fsize);

15 int count = 0;

16 while(text[count] != 0) {

17 count++;

18 }

19 printf("Character count is %d\n", count);

20

21 free(text); // Free the buffer

22 return 0;

23 }� �
Listing 15: A simple program that counts the number of characters in a file of any size.

We call this the brain dead allocator because of an obvious flaw: it will eventually run
out of memory. There is no provision for this allocator to release unused memory back to
the heap when we are finished with it. After enough allocation requests, the freeptr will
reach the top of the heap and be unable to satisfy subsequent requests.

To avoid running out of memory, we need some way of returning memory blocks to the
free heap once we are done using them. The rest of the allocation strategies discussed here
enable us to return unused memory to the heap.

Exercise 4.1 Implement bd malloc(), the brain-dead memory allocator in C.

4.1.2 Block Memory Allocator

The block memory allocator divides free memory into fixed-size blocks that can be used
to satisfy allocation requests. The block allocator keeps track of which blocks are free and
which are used. Conventionally, free memory is split into pools of power-of-two sized blocks.
For example, the allocator may create pools of 128, 256, 512, and 1024-byte blocks. These
blocks are usually configured as arrays at compile time.

Block allocators maintain some metadata structure that tracks whether each block is
free or used. This can be implemented as a bitmap, linked list or hash map. When a new
memory request arrives, the block allocator searches for a free block that is large enough to
satisfy the request. It marks that block as used and returns the base address of the block.

When the calling program is finished using a memory block, it frees the block by calling
an allocator function that returns the block to the free pool.

Characteristics of the Block Allocator

• Low external fragmentation, high internal fragmentation

• Fast
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free
heap

memory

← freeptr

(a) Free heap before any memory allo-
cations

free
heap

memory

← freeptr

Allocated memory

(b) Heap after one allocation.

Figure 4.1: Heap in the brain dead allocator. In 4.1a, all memory in the heap is initally free.
After one allocation request, a block of memory at the beginning of the heap is allocated,
and the rest is free.

• Somewhat inflexible to different workloads: must know about the size of blocks that
will be requested at compile time.

The block memory allocator has historically been preferred for long-running unattended
software like embedded systems and servers because it does not cause external fragmentation.
In fact, the original implementation of the bash UNIX shell used a block allocator to avoid
fragmentation. As physical memories have gotten larger, programmers have become less
concerned with memory fragmentation because we can easily expand the heap. The next
two memory allocators are much more flexible than the brain dead allocator or the block
allocator because they can expand the heap under high memory pressure.

Exercise 4.2 Implement block malloc() and block free(), in C.

128 byte

256 byte

512 byte

1024 byte

Figure 4.2: Blocks of memory used by the block memory allocator.
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4.1.3 The First Fit Allocator

4.1.4 The Buddy Allocator

4.2 Virtual Memory

4.2.1 The Page Table

4.2.2 The Translation Lookaside Buffer
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Appendix A

Building a Cross Compiler

If building on a non-x86 system, you will need a cross compiler to generate code for the x86.
A cross compiler is a compiler that runs on one system but generates code for a different
system.

Some Linux distributions such as Ubuntu have prepackaged cross compilers to cross-
compile code for popular platforms. On other Linux distributions, you will need to build
your own cross compiler from source. crosstool, explained in ?? is a tool to automatically
build a complete cross compiler plus necessary extras like libraries.

A.1 A Practical Guide to Using Cross Compilers

As an advanced user of compilers, it’s helpful to understand some of the jargon that compiler
developers use when they talk about the systems they work on.

A.1.1 Toolchains vs Compilers

Strictly speaking, the compiler is just the program that converts source code into machine
code. There are many other ancillary tools that we use to Table A.1 lists some important
tools from a package called Binutils that come in handy when working on an operating
system. We use the binutils tools throughout this book to work with binary files.

Binutils is also used by the toolchain to generate binary files. The binutils tools are
architecture-dependent: tools built for one architecture cannot be used to work with binary
files for a different architecture.

A.1.2 Compiler Tuples

To specify the platform that a compiler generates code for, gcc uses a compiler tuple. The
tuple tells (i) the CPU the the compiler targets, (ii) the operating system the generated
binaries will run in and (iii) the C library the binaries will use when they run. For our
purposes in this book, the most important part of the compiler tuple is the CPU that the
compiler generates code for. In general, when a compiler compiles a program, it needs to
know what OS and library that program will use at runtime. The OS and libraries are not
part of the core program code, so the compiler needs to know how to call external functions.
We will be writing out own C library and OS, so there will be no external library or OS code
to be called. The compiler does not need to know what those are in order to generate code,
so the library and OS parts of the tuple are not important for us.
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Table A.1: Key tools in GNU Binutils used for manipulating object files.

Tool Function Example

objcopy Convert binary file format objcopy -O binary obj/mbr.elf mbr.img

Convert mbr.elf to flat binary file mbr.img

objdump Reverse-engineer object files objdump --source file.elf

Disassemble file.elf

size Lists the sizes of the sections
of a binary file

size test.elf

Display size in bytes of the text, data and bss

segments of test.elf

reaadelf Examine metadata in an ELF
file

readelf -h file.elf

Print ELF file header from file.elf

For example, you might run a cross compiler on an ARM-based Mac to generate code
for an x86 PC. In Ubuntu, you can install with the following command:

user@system ~ $ sudo apt install gcc-i686-linux-gnu

This command will install a compiler and associated tools called i686-linux-gnu-gcc.
This is confusing—the package name in Ubuntu’s apt package manager is called gcc-i686-linux-gnu,
but the compiler is called i686-linux-gnu-gcc. Other tools for the cross compiler like
objdump, size, etc. all have the i686-linux-gnu- prefix.

A.2 Crosstool

crosstool-ng is a tool for building cross compilers. It is useful on systems where pre-
packaged cross compilers are not available. On Gentoo, run:

user@system ~ $ sudo bash -c "’echo sys-devel/crosstool-ng **’ \

>> /etc/portage/package.accept_keywords/crosstool"

user@system ~ $ sudo emerge sys-devel/crosstool-ng

Create an empty directory to hold the crosstool configuration, then

user@system ~ $ mkdir i386-crosstool

user@system ~ $ cd i386-crosstool

user@system ~/i386/crosstool $ ct-ng menuconfig

In the crosstool menuconfig:

Target options --->

Target architecture (x86)

Bitness: (32-bit)

(i386) Emit assembly for CPU

C-library --->

C library (none)

Debug Facilities --->

[*] gdb
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Then build the toolchain:

user@system ~/i386/crosstool $ ct-ng build

Crosstool with then download the source needed to build gcc and binutils as a cross
compiler. When it finishes, the toolchain will be located in /x-tools/i386-unknown-elf/bin.
You can leave it in that location or copy it to a /usr/local to avoid polluting your home
directory:

user@system ~/i386/crosstool $ cp -r ~/x-tools/i386-unknown-elf /usr/local

Finally, add the location of your toolchain to your shell’s path. Place the following line
at the end of your /.bashrc file.

export PATH=$PATH:/usr/local/i386-unknown-elf/bin
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Appendix B

Building Grub

This chapter explains how to build GRUB from source for the i386 platform. You might need
to build GRUB if your development system doesn’t offer an i386-PC installation package.

user@system ~ $ sudo apt install autoconf gettext autopoint pkg-config

user@system ~ $ git clone https://git.savannah.gnu.org/git/grub.git

user@system ~ $ cd grub

user@system ~ $ ./bootstrap

If building on a non-x86 system, you need to specify the name of the cross compiler.
In the following command, specify the --target= option that matches the name of the
cross compiler on your system. For example, if you are using Ubuntu and installed the
i686-linux-gnu-gcc package, the following command will work without modification. If
you have a compiler with a different name (like if you built with Crosstool), you may need
to use a different targeet name that matches your toolchain.

user@system ~ $ ./configure --with-platform=pc --target=i686-linux-gnu --prefix=/usr/local/grub/

user@system ~ $ make

user@system ~ $ sudo make install
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