
CS 310

FILESYSTEMS

PAGE DESCRIPTOR BIT FIELDS

MAGNETIC DISKS

HARD DISK PLATTER

Concentric tracks called cylinders

HARD DISK PLATTER

Each cylinder has many short
segments called sectors

A sector stores 512 bytes

A sector is the atomic unit of
memory on a magnetic disk

LBA = (C × HPC + H) × SPT + (S − 1)

LOGICAL BLOCK ADDRESSES

Cylinder Head Sector LBA
0 0 1 0
0 0 2 1
0 0 3 2
… … … …
0 0 63 62
0 1 1 63
… … … …

INTRO TO FLASH MEMORY CELLS

N-CHANNEL MOSFET

VDD

GND

Drain

Source

Gate

N-CHANNEL MOSFET

VDD

GND

0V

Charges get stuck @ drain

N-CHANNEL MOSFET

VDD

GND

1V

P-CHANNEL MOSFET

VDD

GND

Source

Drain

Gate

Same as N-Channel MOSFET, but
you apply a voltage to turn it off.

COOL THINGS YOU CAN MAKE: INVERTER
VDD

GND

OutputInput

COOL THINGS YOU CAN MAKE: INVERTER
VDD

GND

Input = 0V Output

P-Channel MOSFET is ON

N-Channel MOSFET is OFF

COOL THINGS YOU CAN MAKE: INVERTER
VDD

GND

Input = 0V Output = 1V

COOL THINGS YOU CAN MAKE: INVERTER
VDD

GND

Input = 1V Output

P-Channel MOSFET is OFF

N-Channel MOSFET is ON

COOL THINGS YOU CAN MAKE: INVERTER
VDD

GND

Input = 1V Output = 0V

HOW AN N-CHANNEL MOSFET IS MADE

HOW AN N-CHANNEL MOSFET IS MADE

Silicon Substrate
n-Doped Channel

SourceDrain

Gate

SiO2 Insulator

HOW AN N-CHANNEL MOSFET IS MADE

HOW AN N-CHANNEL MOSFET IS MADE

N-CHANNEL MOSFET FLASH MEMORY CELL

VDD

GND

Floating Gate

N-CHANNEL MOSFET FLASH MEMORY CELL

VDD

GND

MOSFET Stuck Open

Apply large Positive Voltage (12V)

HOW FILESYSTEMS WORK

Disk: Provides storage at the granularity
of a sector (512 bytes)

OS: Provides filesystem abstraction so
programs don’t have to deal with sector-
level storage

Userland: gets random access to data in
files

read and write
syscalls

Disk driver

This is what the
OS thinks of you.

Have you noticed the OS has a very low
opinion of you?

It doesn’t think you can:
•manage your own memory
•keep track of your own persistent storage

(files)
•deal with your own I/O
•etc. etc. etc.

ABSTRACT INTERFACE THAT FILESYSTEMS PROVIDE

etc …

/

ls

bin

vim kernel8.img

boot

mysql

var

index.html

www

mnt

IMG_3330.jpg

usb

IMG_3329.jpg
These files are on a
different physical device

ON DISK DATA STRUCTURES

0 7

8 15

16 23

4k block
(8 512-byte sectors)

LBA

ON DISK DATA STRUCTURES

D D D D D D D D

D D D D D D D D

0 7

8 15

16 23

Data Region consists of
blocks that can be
allocated for file data.

Data blocks can’t be
subdivided for small files.

ON DISK DATA STRUCTURES

I I I I I

D D D D D D D D

D D D D D D D D

0 7

8 15

16 23

An inode tells us where to
find the data blocks for a
particular file.

ON DISK DATA STRUCTURES

I D I I I I I

D D D D D D D D

D D D D D D D D

0 7

8 15

16 23

Data bitmap and inode
bitmaps tell us which data
blocks and inode blocks
are available.

ON DISK DATA STRUCTURES

S i d I I I I I

D D D D D D D D

D D D D D D D D

0 7

8 15

16 23

Superblock tells us
parameters of the
filesystem like how many
inode blocks and data
blocks there are and where
to find the root inode.

When mounting a
filesystem, the OS always
reads the superblock first
to find out where all the
other data structures are.

INODES
Size Name Description
2 bytes mode can this file be read/written/executed?
2 bytes uid owner of this file
4 bytes size How many bytes in this file?
4 bytes time Time this file was last accessed
4 bytes ctime Time this file was created
4 bytes mtime Time this file was modified
4 bytes dtime What time was this inode deleted?
2 bytes gid Group that owns this file
2 bytes links_count How many hard links to this file
4 bytes blocks How many blocks allocated to this file
4 bytes flags How should ext2 use this inode?
4 bytes osd1 Available for use by OS
60 bytes block Set of 15 disk pointers
4 bytes generation file version (used by NFS)
4 bytes file_acl used for permissions
4 bytes dir_acl permissions…

CREATING LARGE FILES

S i d

D D D D D D D

D D D D D D D D

0 7

8 15

16 23

If an inode can only point
to 4 data blocks, max file
size is 16 kbytes (4 * 4k).

Multi-level index uses data
blocks to hold extra index
pointers.

If each data block can hold
1024 pointers, max file size
with inode + 1 data block is
(4+1024)*4k = 4112 k

D

inum record length string length file name
5 12 2 .
2 12 3 ..
12 12 4 foo
13 12 4 bar
24 36 29 foo_bar_version_12_27_20.txt

Each Row is called a directory entry

inum record length string length file name
5 12 2 .
2 12 3 ..
12 12 4 foo
13 12 4 bar
24 36 29 foo_bar_version_12_27_20.txt
12 15 9 foo_link

HARD LINK: MAKE ANOTHER DIRECTORY ENTRY POINT TO
SAME INODE

foo_link and foo both point to inode 12 Limitations of hard links:
1. You can’t create hard links to directories (to prevent cycles).
2. You can’t create a hard link to a file on another partition.

inum record length string length file name
5 12 2 .
2 12 3 ..
12 12 4 foo
13 12 4 bar
24 36 29 foo_bar_version_12_27_20.txt
12 15 9 foo_link

SYMLINKS/SOFT LINKS/SYMBOLIC LINKS

foo_link and foo both point to inode 12 Limitations of hard links:
1. You can’t create hard links to directories (to prevent cycles).
2. You can’t create a hard link to a file on another partition.

JOURNALING AND WRITE INCONSISTENCIES

Da

inode data

Bitmaps

inodes

WHAT HAPPENS WHEN POWER FAILS MID-WRITE?

0 1 2 3 4 5 6 7

Da

inode data

Bitmaps

inodes

SUPPOSE WE WANT TO APPEND A 4K BLOCK TO FILE

0 1 2 3 4 5 6 7

1. Allocate a data block from the data bitmap.

Da

inode data

Bitmaps

inodes

SUPPOSE WE WANT TO APPEND A 4K BLOCK TO FILE

0 1 2 3 4 5 6 7

1. Allocate a data block from the data bitmap.
2. Set the direct pointer in the file’s inode to point to the new data block.

Da Db

inode data

Bitmaps

inodes

SUPPOSE WE WANT TO APPEND A 4K BLOCK TO FILE

0 1 2 3 4 5 6 7

1. Allocate a data block from the data bitmap.
2. Set the direct pointer in the file’s inode to point to the new data block.
3. Write the new data block.

1. Just the data block gets written, not the inode or bitmap
2. Just the inode gets written, not data or bitmap (inconsistency)
3. Just the bitmap gets written, not inode or data (inconsistency)
4. inode and bitmap are written, but not data (garbage data)
5. inode and data get written, but not bitmap (inconsistency)
6. bitmap and data get written but no inode (inconsistency)

POSSIBLE FAILURE SCENARIOS

Da

inode data

Bitmaps

inodes

JOURNALING ALLOWS US TO RECOVER

0 1 2 3 4 5

journal

JOURNALING ALLOWS US TO RECOVER

journal

Note: writes of 512 byte sectors are atomic.

TxB

JOURNALING ALLOWS US TO RECOVER

journal

TxB inode

JOURNALING ALLOWS US TO RECOVER

journal

TxB inode bitmap

JOURNALING ALLOWS US TO RECOVER

journal

TxB inode bitmap Db

JOURNALING ALLOWS US TO RECOVER

journal

Ensure that writes have been committed to disk

TxB inode bitmap Db TxE

POSSIBLE FAILURE SCENARIOS: JOURNALING

journal

1. Power fails during journaling before TxE commits: transaction is lost, but fs stays consistent.

2. Power fails after TxE commits: recover the transaction from journal.

3. Power fails after journal commits while updating on-disk structs: recover transaction from journal.

FAT FS

FAT FILESYSTEM

Boot
Sector

File
Allocation
Table #1

File
Allocation
Table #2…

Root
Directory

Data Data Data Data Data Data

Reserved
Sector

FAT Region Root
Directory
Region

BOOT SECTOR (SUPERBLOCK)
Offset Size Description
0x00 3 Jump Instruction. Unused by you.
0x03 8 OEM Name (name of formatting program)
0x0B 2 Bytes per sector
0x0D 1 Sectors per cluster (cluster = block)
0x0E 2 Number of reserved sectors
0x10 1 Number of FATs
0x11 2 Number of root directory entries
0x13 2 Total sectors
0x15 1 Media descriptor. Unused by you
0x16 2 Sectors per FAT
0x18 2 Sectors per track
0x1A 2 Number of heads
0x1C 4 Number of hidden sectors
0x20 4 Total sectors in the FS
0x24 1 Logical Drive Number
0x25 1 Reserved
0x26 1 Extended Signature
0x27 4 Serial number
0x2B 11 Volume label
0x36 8 FS type

ROOT DIRECTORY ENTRY
Offset Size Description
0x00 8 Short file name
0x08 3 File extension
0x0B 1 File attributes
0x0C 1 Attributes. Not needed by you
0x0D 1 First character of a deleted file
0x0E 2 Create time. Not needed by you.
0x10 2 Create date. Not needed by you.
0x12 2 Last access date
0x14 2 File access rights bitmap. Not needed by you.
0x16 2 Last modified time. Not needed by you.
0x18 2 Last modified date. Not needed by you.
0x1A 2 Start of file in clusters.
0x1C 4 File size in bytes.

1. Read the boot sector. Use the info in it to find the root
directory entry on disk.

2. Read the root directory entry. Iterate thru each RDE
searching for a match with the filename you’re looking
for. When you find the match, the RDE will tell you the
data cluster where you can find the file’s data.

3. Read the FAT. If your file takes up more than one data
cluster, the FAT will contain linkages to the other ones.

MOUNTING YOUR FAT FS

EXAMPLE: BOOT SECTOR (SUPERBLOCK)
What sector do we read to get
the RDE?

Offset Size Value Description
0x00 3 0xEB 0x3C 0x90 Jump Instruction. Unused by you.
0x03 8 “mkfs.fat” OEM Name (name of formatting program)
0x0B 2 0x0200 Bytes per sector
0x0D 1 0x04 Sectors per cluster (cluster = block)
0x0E 2 0x0004 Number of reserved sectors
0x10 1 0x02 Number of FATs
0x11 2 0x0002 Number of root directory entries
0x13 2 0x0080 Total sectors
0x15 1 0xF8 Media descriptor. Unused by you
0x16 2 0x0020 Sectors per FAT
0x18 2 0x0020 Sectors per track
0x1A 2 0x0002 Number of heads
0x1C 4 0x00000000 Number of hidden sectors
0x20 4 0x00000000 Total sectors in the FS
0x24 1 0x80 Logical Drive Number
0x25 1 0x00 Reserved
0x26 1 0x29 Extended Signature
0x27 4 0xD52A5875 Serial number
0x2B 11 “NO NAME” Volume label
0x36 8 “FAT16” FS type

Offset Size Value Description
0x00 3 0xEB 0x3C 0x90 Jump Instruction. Unused by you.
0x03 8 “mkfs.fat” OEM Name (name of formatting program)
0x0B 2 0x0200 Bytes per sector
0x0D 1 0x04 Sectors per cluster (cluster = block)
0x0E 2 0x0004 Number of reserved sectors
0x10 1 0x02 Number of FATs
0x11 2 0x0002 Number of root directory entries
0x13 2 0x0080 Total sectors
0x15 1 0xF8 Media descriptor. Unused by you
0x16 2 0x0020 Sectors per FAT
0x18 2 0x0020 Sectors per track
0x1A 2 0x0002 Number of heads
0x1C 4 0x00000000 Number of hidden sectors
0x20 4 0x00000000 Total sectors in the FS
0x24 1 0x80 Logical Drive Number
0x25 1 0x00 Reserved
0x26 1 0x29 Extended Signature
0x27 4 0xD52A5875 Serial number
0x2B 11 “NO NAME” Volume label
0x36 8 “FAT16” FS type

RDE Location = # FAT Tables * #Sectors/FAT + # Hidden Sectors + # Reserved Sectors
RDE Location = 2 * 32 + 0 + 4 = 68

ROOT DIRECTORY ENTRY #1
Offset Size Value Description
0x00 8 41 6a 00 75 00 6e 00 6b (“Aj.u.n.k”) Short file name
0x08 3 00 2e 00 File extension
0x0B 1 0x0F File attributes
0x0C 1 0x00 More Attributes. Not needed by you
0x0D 1 0x3C (’t’) First character of a deleted file
0x0E 2 0x0074 Create time. Not needed by you.
0x10 2 0x0078 Create date. Not needed by you.
0x12 2 0x0074 Last access date
0x14 2 0x0000 File access rights bitmap. Not needed by you.
0x16 2 0xFFFF Last modified time. Not needed by you.
0x18 2 0xFFFF Last modified date. Not needed by you.
0x1A 2 0x0000 Start of file in clusters.
0x1C 4 0xFFFFFFFF File size in bytes.

ROOT DIRECTORY ENTRY #2
Offset Size Value Description
0x00 8 4a 55 4e 4b 20 20 20 20 (“JUNK “) Short file name
0x08 3 54 58 54 (“TXT”) File extension
0x0B 1 0x20 File attributes
0x0C 1 0x00 More Attributes. Not needed by you
0x0D 1 0x19 First character of a deleted file
0x0E 2 0x7CA9 Create time. Not needed by you.
0x10 2 0x5270 Create date. Not needed by you.
0x12 2 0x5270 Last access date
0x14 2 0x0000 File access rights bitmap. Not needed by you.
0x16 2 0x7CA9 Last modified time. Not needed by you.
0x18 2 0x5270 Last modified date. Not needed by you.
0x1A 2 0x0000 Start of file in clusters.
0x1C 4 0x00000000 File size in bytes.

