
Section 3.7 Procedures 239

in different programming languages-functions, methods, subroutines, handlers,
and so on-but they all share a general set of features.

There are many different attributes that must be handled when providing
machine-level support for procedures. For discussion purposes, suppose proce-
dure P calls procedure Q, and Q then executes and returns back to P. These actions
involve one or more of the following mechanisms:

Passing control. The program counter must be set to the starting address of the
code for Q upon entry and then set to the instruction in P following the
call to Q upon return.

Passing data. P must be able to provide one or more parameters to Q, and Q must
be able to return a value back to P.

Allocating and deallocating memory. Q may need to allocate space for local
variables when it begins and then free that storage before it returns.

The x86-64 implementation of procedures involves a combination of special
instructions and a set of conventions on how to use the machine resources, such as
the registers and the program memory. Great effort has been made to minimize
the overhead involved in invoking a procedure. As a consequence, it follows what
can be seen as a minimalist strategy, implementing only as much of the above set
of mechanisms as is required for each particular procedure. In our presentation,
we build up the different mechanisms step by step, first describing control, then
data passing, and, finally, memory management.

3.7.1 The Run-Time Stack

A key feature of the procedure-calling mechanism of C, and of most other lan-
guages, is that it can make use of the last-in, first-out memory management disci-
pline provided by a stack data structure. Using our example of procedure P calling
procedure Q, we can see that while Q is executing, P, along with any of the proce-
dures in the chain of calls up to P, is temporarily suspended. While Q is running,
only it will need the ability to allocate new storage for its local variables or to set up
a call to another procedure. On the other hand, when Q returns, any local storage it
has allocated can be freed. Therefore, a program can manage the storage required
by its procedures using a stack, where the stack and the program registers store
the information required for passing control and data, and for allocating memory.
As P calls Q, control and data information are added to the end of the stack. This
information gets deallocated when P returns.

As described in Section 3.4.4, the x86-64 stack grows toward lower addresses
and the stack pointer %rsp points to the top element of the stack. Data can be
stored on and retrieved from the stack using the pushq and popq instructions.
Space for data with no specified initial value can be allocated on the stack by simply
decrementing the stack pointer by an appropriate amount. Similarly, space can be
deallocated by incrementing the stack pointer.

When an x86-64 procedure requires storage beyond what it can hold in reg-
isters, it allocates space on the stack. This region is referred to as the procedure's

1
l

240 Chapter 3 Machine-Level Representation of Programs

Figure 3.25
General stack frame
structure. The stack
can be used for passing
arguments, for storing
return information, for
saving registers, and for
local storage. Portions
may be omitted when not
needed.

Increasing
address

Stack "bottom"
•' .

t

• ,,
•
•

Argumentn

c_ r; .?. '•" ef,,· . ., -- ··g N.

11" '"""""'. "
Argument 7

Retui;n, address

Saved registers

Local variables

Argument
build area

Stack poJtiter _..... /'.rsp . .,._ ______ __.
Stack '1op"

Earlier frames

Frame for calling
function P

><Frame for executing
• • funetion Q

I - t.

stack frame.figure 3.25 shows the overall structure of the run-time stack, includ-
ing its partitioning into stack frames, in its m©st gerre'ral form. The frame for the
currently executing procedure is always at'the top of the stack When procedure P
calls procedure Q, it will push 'the return address onto indicating where
within P the program should resume execution once Q returns. We consider the
return address to be part of P's stack.frame, 'since it holds state relevant to P. The
cqde for Q allocates the space required for its stack frame by extending the cur-
rent stack boundary. Within that space, it can save the values of registers, allocate

Section 3.7 Procedures 241

space for local variables, and set up arguments for the procedures it calls. The
stack frames for most procedures are of fixed size, allocated at the beginning of
the procedure. Some procedures, however, require variable-size frames. This issue
is discussed in Section 3.10.5. Procedure P can pass up to six integral values (i.e.,
pointers and integers) on the stack, but if Q requires more arguments, these can
be stored by P within its stack frame prior the call.

In the interest of space and time efficiency, x86-64 procedures allocate only
the portions of stack frames they require. For example, many procedures have
six or fewer arguments, and so all of their parameters can be passed in registers.
Thus, parts of the stack frame diagrammed in Figure 3.25 may be omitted. Indeed,
many functions do not even require a stack frame. This occurs when all of the local
variables can be held in registers and the function does not call any other functions
(sometimes referred to as a leaf procedure, in reference to the tree structure of
procedure calls). For exampfo, none of the functions we have examined thus far
required stack frames.

3.7.2 Control Transfer

Passing control from function P to function Q involves simply setting the program
counter (PC) to the starting address of the code for Q. However, when it later
comes time for Q to return, the processor must have some record of the code
location where it should resume the execution of P. This information is recorded
in x86-64 machines by invoking procedure Q with the instruction call Q. This
instruction pushes an address A onto the stack and sets the PC to the beginning
of Q. The pushed address A is referred to as the return address and is computed
as the address of the instruction immediately following the call instruction. The
counterpart instruction ret pops an address A off the stack and sets the PC to A.

The general forms of the call and ret instructions are described as follows:

Instruction

call Label

call •Operand

ret,

Description
Procedure call
Procedure call
Return from call

(These instructions are referred to as callq and retq in the disassembly outputs
generated by the program OBJDUMP. The added suffix 'q' simply emphasizes that
these are x86-64 versions of call and return instructions, not IA32. In x86-64
asse!fibly code, both versions can be used interchangeably.)

The call instruction has a target jndicating the address of the instruction
where the called procedure starts. Like jumps, a call can be either direct or indirect.
In assembly code, the target of a direct call is given as a label, while the target of
an indirect call is given by '•' followed by an operand specifier using one of the
formats described in Figure 3.3.

