
CS 310 Execution Level Lab

Spring 2021

February 23, 2021

1 Privileged Operations and Execution Level

Basically all microprocessors implement some form of privilege hierarchy for software that they run. The simplest form of
privilege separation is a binary distinction between userland (unprivileged) and operating system (privileged). Userland code
(regular program binaries) run in unprivileged mode with no direct access to I/O devices or memory outside of their own
process address space. This can prevent buggy or malicious code from overwriting important data structures and crashing
the system. The ARM Cortex-A8 extends the concept a bit further, implementing four privilege levels which it calls execution
levels.

EL0 Lowest privilege level. Userland code.
EL1 Operating system.
EL2 Hypervisor
EL3 Highest privilege level, used by TrustZone (ARM’s programmable trusted computing state).

A special architectural register called the CurrentEL register stores the current execution level that the processor is
executing in. You can use the mrs and msr1 instructions to read and write CurrentEL respectively. For example, to get the
current execution level into variable el, we can do:

unsigned int el;

asm("mrs %0,CurrentEL"

: "=r"(el)

:

:);

Task 1: write a function in assembly language that reads and returns the CurrentEL register.

2 Transitioning to a Lower Execution Level

When the CPU boots, it starts in EL3, and the OS code must transition to EL1. Before reducing the privilege levels, we need
to do some configuration. There are lots of other special-purpose registers in the ARM microprocessor that can be accessed
with mrs and msr.

Task 2: There is some pre-made code on the course website to transition your CPU to EL1. Copy-paste that code in to
boot.s and run it. Check the output of your CurrentEL function to make sure that you are now in EL1.

Task 3: Modify the code you copy-pasted into boot.s to transition your processor to EL0 instead of EL1. This is the level
where userland programs run. Try calling one of your driver functions (LED initialization or serial port) from EL0. The
computer should take a dump.

1mrs stands for move to register from special purpose register. The name for the instruction seems kind of backwards.

1



3 System Register Details

If you’re curious, there are some details about how to set up the system registers for transitioning the processor into EL1.

3.1 SCTLR

The Cortex-A8 CPU lets us configure settings individually for each execution level by writing config values to the System
Control Register (called SCTLR ELx for execution level x). Complete description of this register can be found in Section
D10.2.100 (page D10-2654) of the AArch64 Architecture Reference Manual.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
EnIA EnIB LSMAOE nTLSMD EnDA UCI EE E0E SPAN RES1 IESB RES1 WXN nTWE RES0 nTWI

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
UCT DZE EnDB I RES1 RES0 UMA SED ITD RES0 CP15BEN SA0 SA C A M

Bit
Number

Set
To

Name Description

31 0 EnIA Enable (1) /disable (0) pointer authentication in EL1
30 0 EnIB Enable (1) /disable (0) pointer authentication in EL1
29 1 LSMAOE Load/store multiple atomicity enable
28 1 nTLSMD Unimplemented on RPI. Set to 1.
27 0 EnDA Enable (1) /disable (0) pointer authentication in EL1
26 0 UCI Trap cache maintenance instructions to EL1
25 0 EE Endianness of data accesses at EL1 (0 is little endian, 1 is big)
24 0 E0E Endianness of data accesses at EL0 (0 is little endian, 1 is big)
23 1 SPAN Set Privilege Access Never on taking an exception to EL1
22 1 RES1 Reserved, set to 1
21 0 IESB Implicit error synchronization event enable.
20 1 RES1 Reserved, set to 1
19 0 WXN If set, all writable regions of memory forced execute never in EL0 and EL1.
18 1 nTWE Traps WFE instructions at EL0 to EL1.
17 0 RES0 Reserved, set to 0
16 1 nTWI Traps WFI instructions at EL0 to EL1.
15 0 UCT Traps EL0 accesses to the CTR EL0 to EL1, from AArch64 state only.
14 0 DZE Traps EL0 execution of DC ZVA instructions to EL1, from AArch64 state only.
13 0 EnDB Enable pointer authentication of instruction addresses in the EL1&0.
12 0 I Instruction cachability for accesses at EL0 and EL1
11 1 RES1 Reserved, set to 1
10 0 RES0 Reserved, set to 0
9 0 UMA User Mask Access. Traps EL0 execution of MSR and MRS instructions.
8 0 SED SETEND instruction disable. Disables SETEND instructions at EL0 using AArch32.
7 0 ITD IT disable: disables IT instructions in AArch32 mode.
6 0 RES0 Reserved, set to 0
5 1 CP15BEN Instruction memory barrier enable. Enables DMB, DSB, and ISB instructions in EL0
4 0 SA0 Stack pointer alignment check enable for EL0.
3 0 SA Stack pointer alignment check enable for EL1.
2 1 C Cachability control
1 0 A Alignment check enable
0 0 M MMU Enable

3.2 HCR

The Hypervisor Configuration Register configures a bunch of stuff for virtualization. The main thing we will use it for is to
configure the CPU to run in 64-bit mode by setting bit 31 to 1.

2



ldr x0, =0x80000000

msr hcr_el2, x0

3.3 SCR

The Secure Configuration Register controls the security state of the CPU. We will use it to set the CPU to an unsecured
state for now by setting bit 0 to 1. We will also set bit 10 to 1 to enable 64-bit mode in EL0. Bits 5 and 4 are reserved and
should be set to 1. Detailed description of the SCR is in Section D10.2.99 of the AArch64 Manual.

ldr x0, =0x431

msr scr_el3, x0

3.4 SPSR

The Saved Program Status Register saves the program state when the CPU transitions from a lower execution level to a
higher one (for example to handle an interrupt). The state from the SPSR is then restored when the CPU transitions back to
the lower execution level.

3


