
WSCLoca - A Simple and Effective Algorithm for Virtual Memory Management

Richard W. Cart 1
Department of Computer Science

Stanford University

John L. Hennessy
Computer Systems Laboratory

Stanford University

Abs t r ac t

A new virtual memory management algorithm WSCLOCK has been

synthesized from the local working set (WS) algorithm, the global

CLOCK algorithm, and a new load control mechanism for auxiliary

memory access. The new algorithm combines the most useful

feature of W S - a natural and efti:ctive load control that prevents

thrashing-with the simplicity and efficiency of CLOCK. Studies are
presented to show that the performance of WS and WSCLOCK are

equivalent, even if the savings in overhead are ignored.

Introduction

Modern memory management policies optimize performance by

varying the space allocated to each task as its perceived need
changes. Such policies also vary the load (i.e., the number of active

tasks) to achieve high levels of multiprogramming while avoiding

thrashing. Modern va,'iable-space, variable-load memory

management policies have been divided into local policies and

global ptflicies. Ideally. a local policy estimates the memory needs,

or locality, of each task independently of other tasks and allocates

sufficient main memory to hold the each active task's locality. A

global policy correlates a task's memory allocation with its locality,

but makes no explicit, independent measure of the locality, and

does not necessarily allocate sufficient main memory for each active

task's locality.

This work was supported by the Departanent of Energy, Contract

DE-AC03-76SF00515.

IAuthor's current address: Tandem Computers Inc., 19333 Vallco

Parkway, Cupertino, CA 95014

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

Local policies are typified by the working set (WS) policy which

was first defined by Denning [DI~N~68] and has been the object of

much study [DENN72, RODR73, PRIE73, SMIT76, MARS79]. Global

policies are typified by the global least-recently-used (LRU)

approximation algorithm CLOCK that is used in MULTICS; studies

of CLOCK have appeared infrequently [CORB68, EAST76]. Although

a local policy, such as WS, isolates tasks from each other and may
be better at preventing thrashing, a global policy is often used in

real systems because it is simpler to implement and has less

computational overhead.

This paper presents a new policy WSCLOCK that combines the

operational advantages of WS with the simplicity and efficiency of

CLOCK. We describe the data structures, replacement algorithm

and load control used to implement WSCLOCK. We introduce a

simple new Loading Task~Running Task (LT/RT) load control

mechanism to control competiton for access to auxiliary memory;

although LT/RT is a general control for all memory management

policies, it is shown to be'particularly appropriate for WSCLOCK.

Finally, we describe the use of a realistic simulation model to

demonstrate the effectiveness of both the LT/RT control and of

WSCLOCK.

Our primary focus in this paper is virtual memory management

methods in interactive systems. Interactive systems are

characterized by large numbers of tasks which make numerous

small processing requests; in such systems, the amount of memory

used by all tasks can be many times the size of main memory and,

thus, is where one finds the greatest advantage of virtual memory.

Compared to batch systems, interactive systems activate and

deactivate tasks very frequently and perform the basic memory

management functions more often; these systems benefit the most

from algorithmic simplicity and efficiency. Although the methods

presented in this paper may be most effective in interactive systems,

they do not appear to have any disadvantages when used in batch

systems.

© 1981 A C M 0-89791-062-1-12/81-0087 $00 .75

87

General Model of a Virtual Memory Computer System

This section is a brief summary of a virtual memory computer

system model presented in [CARR81]. The model is designed

specifically to compare scheduling, memory management, and load

control policies on conventional large-scale computers. The model

incorporates both an accurate representation of program behavior

based on measured program reference strings, and a general, but

detailed, model of a virtual memory operating system.

Task Model

A task is modeled by a virtual address space P = { Pi I i=l,2,...,m}
of pages and a reference string {r t I t= 1,2,...,T}. Each reference r t
is an ordered pair (p,d), where p E P and d is Boolean variable

which is true if the reference changes or dirties the page. The

virtual time VT of a task is the number of references that have been

completed for that task. Tasks make I / 0 requests at stochastically-

distributed intervals of virtual time.

Configuration Model

The computer system configuration model contains (1) a central

processor, (2) a main memory of M page frames, and (3) a collection

of 1/0 devices. The central processor is implicity defined as

capable of executing one reference for one task in each unit o f

virtual time. Associated with each frame are the use-bit, set when

the frame is referenced, and the dirty-bit, set by each dirty

reference. I/O devices are modeled as simple servers with

independent and indentically distributed service times.

One or more of the l /O devices is designated as an auxiliary

memory, which contains a copy of every task page. Although the

model permits both task and paging I/O requests to access the

same device, the studies presented in this paper assume that paging

devices are separated from task I/O devices.

Operating System Model

The operating system model has three main components: the

scheduler, the memory manager, and the load control.

Each task occupies one of two scheduler queues (the ready queue

and the active queue) or is dormant. The scheduler orders the

ready queue and assigns a time-slice to each ready task in order to

balance objectives of response time, processor ntilization,

throughput and externally specified priorities. The model uses a

multi-level load-balancing queue, described in [CARR81], which can

be parameterized to operate as any of the simpler queueing

disciplines, such as first-in-first-out or round-robin. Tasks in the

active queue arc selected for execution in round-robin order for

short time quanta to approximate a processor sharing discipline. A

task remains in the active queue until (1) the time-slice is

exhausted, (2) the task is deactivated by the load control, or (3) the

task completes or becomes dormant.

The memory manager allocates main memory frames to each task,

and requests paging I/O operations to copy pages between main

and auxiliary memory. At any given time, each task address space

P is partitioned into a resident set R, of pages which occupy main

memory frames, and a missing set R'. (R' denotes the complement

of the set R.) If the processor executes a reference (p,d) and p l[R,

a page fault blocks the task until the missing page is made resident

by copying it from auxiliary memory. The model assumes demand-

paging: a page p is loaded only after a page fault occurs for p. A p

E R is clean whenever it is copied from main memory to auxiliary

memory, or vice-versa; p is dirty following any reference which sets

the frame dirty-bit."

To achieve optimal performance in a virtual memory computer, the

operating system seeks to maximize the number of active tasks

without inducing thrashing. Thrashing occurs when so many tasks

are active that the sum of their memory needs exceeds the size of

main memory and; memory becomes overcommitted. The load

control monitors the commitment of main memory (either directly

or indirectly) and when memory appears to be undcrcommitted,

load control may move tasks from the ready queue to the active

queue; when memory appears to be overcommitted, the load

control moves tasks from the active queue to the ready queue.

Working Set Policy

The reader should be familiar with the basic concepts of the WS

policy (see [Dt~NN68] or [DENN70]). We limit our discussion to the

relevant details of its implementation.

Working Set Determination

The WS policy defines the working set W to be all p C P

referenced in the previous 0 units of the task's virtual time.

Implementation of WS load control and replacement requires some

timely mechnism to determine each task's W. If a task's page table

contains only p E W, then the arrival of a new p (~ W is signalled

by a page fault. To detect the departure of a page from W is more

difficult. Typically, we require (1) a task's virtual time VT, (2) the

last reference time LR(p) for each page, and (3) a procedure to

detect pages for which VT-LR(p) > 0.

Task VT is easily obtained by summing the time intervals that the

task has executed. Pure WS assumes some mechanism that can

update LR(p) automatically in parallel with program exeqution, but

practical implementations use either the page frame use-bit or

special hardware to approximate LR(p). To use the frame use-bit,

each p (~ R of a given task is examined by software at various times

(e.g., at faults or at fixed intervals). The use-bit is tested and

cleared, and if the page was recently referenced then LR(p) is set to

the task's current VT. To detect p • W and for which VT-LR(p)

> 0 implies a WS-scan of each p E P to find each p E W. (To

88

scan only p £ W for a given task would require the maintenance of

an additional data structure.) The WS-scan can incorporate the

use-bit test to approximate LR(p) with little extra cost.

With the hardware support for WS on the Maniac II (see

[MORR72]) each page frame has an associated counter that

approximates the virtual-time-since-last-reference VT- LR(p)
directly. The counter is cleared whenever the page is referenced

and the processor automatically increments the counter of each

page of the task every .25 msec. that the task executes. Since the

Maniac II has only 64 page frames, the processor time is minimal,

but with the larger memories on modern machines, the time

required to update thousands of counters might be excessive. The

Maniac II implementation still requires a WS-scan to remove the

pages for which VT-LR(p) > 0. In essence, the Maniac It

scheme is equivalent to the ordinary use-bit method, except that the

scanning is scheduled and performed without the overhead

associated with a system interrupt.

Load Control and Replacement Algorithm

When a task is active, W = [W[frames are committed to the task.

The total memory commitment Wactive is the sum of the W of all
active tasks. The WS load control will activate a ready task unless

the W of the first ready task exceeds M-Wactive.

A set A of available frames is replenished whenever a task is

deactivated or when a WS-scan removes resident pages from an

active ,task's W. The replacement algorithm simply chooses some

frame in A. If A is empty, then the load control selects a task to

deactivate and that task's resident pages are placed in A.

Page Writing and Reclamation

When a dirty page is placed in A, it must be cleaned before it is

replaced. A simple approach is to couple the writing of a dirty

page and the reading of the page that replaces it; this method

blocks a faulting task for the time of two paging I/Os instead of

one. Another approach is to replace only the clean pages in A and

to clean the dirty pages in A when there are no outstanding page

read requests for a device: if all pages in A are dirty, then cleaning

operations will naturally have precedence over page reads.

Although a page in A is eligible for replacement, it may not be

replaced for some time. If a task references a page in A, the system

can avoid the delay and a page-in I/O operation if it can reclaim
the page in A. This requires a special procedure to search A each

time a page fault occurs.

CLOCK Policy

CLOCK is a simple approximation of the global LRU replacement

algorithm [Cold~68]. All main memory page frames are ordered in

a fixed circular list as illustrated in Figure 1. A pointer or "hand"

always points to the last frame replaced. When a frame is needed

to hold a missing page, the pointer i s advanced "clockwise",

[• • •
" ' ~ Last Frame

I [] Reaaced
 Ma,o
I I M_ em°ry _L-'=-':'---~' I]Not Replaceable

" ~ [__L_~ N°t Replaceable

~ Replaceable

IAdvance CLOCKL
Pointer I"

~Test and Clear
L U s e - B i t]

¢

Clear

I r I
Schedule Page
For Cleaning I

> Replace Page J

Figure 1. CLOCK Replacement Algorithm

scanning frames in circular order. The use-bit is tested and cleared:

if the ,bit was set, the frame is recently-used and is not replaced; if

the bit was clear, the frame is not-recently-used and is replaceable if

the page is clean. If a replaceable page is dirty, then it is scheduled

for cleaning and is not replaced. When the CLOCK-scan locates a

clean and not-recently-used page, the algorithm halts, leaving the

pointer pointing to the chosen frame to mark the starting point for

the next scan. Note that a page is never removed from R until it is

actually replaced.

Global policies, such as CLOCK, allow all active tasks to compete

for main memory allocation. There is no mechanism to determine

a task's memory needs independently of the other tasks. Thus,

instead of a load control based on explicit estimates of the main

memory committment, global policies typically require an adaptive

feedback control mechanism. For example, the control may

monitor the page fault rate (or auxiliary memory traffic) and adjust

the multiprograrnming level if the rate is too high or too low.

Comparing WS and CLOCK

The WS and CLOCK policies can be compared at many levels. At

the implementation level, WS appears to be more complex than

CLOCK. In particular, WS requires:

(1) scheduling and executing the WS-scan procedure,

89

(2) memory to store LR(p) for every page of every task, and

(3) algorithms to maintain the set A of available pages,

including a method to reclaim pages from A.

The need to store LR(p) effectively doubles the size of the page

tables. In a system where the total of all task virtual memory is

many times the size of main memory, minimization of page tables

is an important consideration.

The implementation of the CLOCK replacement algorithm is simpler

and consumes less memory, but CLOCK requires an adaptive

feedback load control mechanism that is heuristic and, compared to

the WS load control, may be more difficult to tune.

At the policy level, WS appears to have the advantages of good task

isolation, and a predictive load control. Under a global policy, a

task's resident set depends on how actively it references its current

locality relative to the other active tasks. Mathematical models o f

global replacement (see [SMrrS0]) show that some tasks can

monopolize main memory and force other tasks to execute slowly

and inefficiently; global algorithms can also lead tb thrashing

[I)F, NN70]. WS isolates tasks from each other and guarantees each

active task can acquire sufficient main memory to hold its working

set.

At the performance evaluation level, no conclusive comparisons of

WS and CLOCK have been performed, Analytical models are too

weak to characterize the. differences between local and global

memory management policies in general, or the WS and CLOCK

policies in particular. Empirical and simulation studies have not

addressed the problem with sufficient completeness. This work

makes no claim that either WS or CLOCK is more effective than the

other; it is entirely likely that a well-implemented version of either

policy will have approximately the same performance if the

overhead of computing the policy is eliminated. This widely-held

conjecture is supported by studies in [CARR81]. The purpose of

dais paper is to present a policy which is as effective as both WS

and CLOCK and avoids many of the implementation difficulties of

each.

WSO,OCK

The WSCLOCK policy combines the best features of WS and

CLOCK. It retains the thrashing-preventative load control and task

isolation properties of WS, but it eliminates:

(1) the WS-scan,

(2) the space for LR(p) for each task page,

(3) the available frame set A, and

(4) the page reclamation procedure.

The WSCLOCK replacement algorithm uses the simple mechanism

found in CI.OCK but does not require an adaptive feedback load

control. WSCLOCK is simpler than either WS or Ct,OCK.

Data Slruclures

Main memory frames are arranged in a fixed circular CLOCK-like

list. The CLOCK pointer identifies the last frame replaced in the

previous CLOCK-SCan. Instead of an LR(p) for all p E P, LR(p) is

defined only for the resident pages, p E R, in a storage cell

associated with each page frame.

When a page fault occurs, a page read request is placed on a paging
queue. When an auxiliary memory device is available, a request for

that device is removed and processed; at that time, the replacement

algorithm is invoked to obtain a frame containing a clean

replaceable page to hold the incoming page.

Replacement Algorithm

The WSCI,OCK replacement algorithm uses the CLOCK scanning

method to apply the WS replacement rule as shown in Figure 2.

To examine a frame, WSCLOCK tests and clears the frame use-bit.

If the bit was set, I,R(p) is set to the owning task's I/T. Otherwise,

if KT- LR(p) >_ 8 then the page is renloved from W. A page p is

replaceable if either (1) p ¢ W , or (2) the owning task is not

active. If a replaceable page is dirty, then it is scheduled for

cleaning and not replaced. When WSCLOCK finds a clean

replaceable page, it halts, and leaves the pointer at the chosen

frame.

Start

I Advance CLOCK ~:
Pointer i

Test and Clear
I Use-Bit I I Schedule Page

I For Cleaning

I Yes I No @e,
Figure 2. WSCLOCK Replacement Algorithm

90

WSCLoCK eliminates the available page set A because it simply

searches for and finds a replaceable page when one is needed.

Page reclamation is eliminated because a page is not removed from

a task's R until it is selected for replacement. Pages to be cleaned

are placed on the paging queue with the read requests. The queue

can be ordered by time of request (FIFO) or by placing reads

before writes.

In general, it is unnecessary to remove a page being cleaned from

R. The dirty-bit is cleared when the I/O to write the page is

initiated; if the page is updated subsequently (even during the I/O)

the dirty-bit is reset and the page will be cleaned again before it is

replaced. After a page is cleaned, it will be replaced on the next

circuit of the CI.OCK pointer unless it is referenced (and reenters

W). Alternatively, a list of recently-cleaned pages can be

maintained; the replacement algorithm takes a page from this list in

preference to performing the CLOCK-SCan.

Load Control

Since WSCLOCK scans only p E R, it does not approximate W if W

contains some p ~ R. WSCLOCK approximates only the resident

working set RW = R I"1 W. WSCLOCK load control uses the same

rules as WS load control, but using R W = IRWI as the memory

commitment of each task. RWactive is defined to be the sum of the
RW of the active tasks. When a task is deactivated, all of its pages

are eligible for replacement and, thus, RW of a ready task is the

value of R W when that task was deactivated.

WSCLOCK detects overcommitment when the CLOCK-scan fails to

find a clean replaceable page in a full circuit of the frames. If

there are any page cleaning requests on the paging queue, these are

processed to produce a clean replaceable page. Otherwise, there are

no replaceable pages, either clean or dirty, and some task must be

deactivated to relieve overcommitment.

LT/RT Control

Introduction

When a task is activated, it usually enters a loading phase in which

it has few p E R and must load missing pages to execute efficiently.

When the task has loaded a sufficient resident set, it enters a

running phase in which few page faults occur and the task executes

e~ciently. Typically, the virtual time of the loading phase is small,

while the real time of the loading phase is disproportionately large

because of the paging I/O delays.

If activations occur frequently, many loading tasks may contend for

access to attxiliary memory. If we assume that each loading task

has an equal opportunity to access auxiliary memory, the loading

time is proportional to the number of concurrent loading tasks.

Any increase in the number of loading tasks will increase the

duration of each task's loading phase and, thus, will also increase

the probability that the remaining running tasks will complete their

time slices and be displaced by even more loading tasks.

This tendency for an undesirable situation to become even worse is

reminiscent of thrashing, but arises from an overcommitment of

auxiliary memory rather than main memory. Note that this

phenomenon may cause the auxiliary memory to be extremely busy

even though main memory is undercommitted; this illustrates a

weakness of load controls based auxiliary memory traffic, such as

the 50% rule [DENN76].

To avoid periods of low processor utilization that occur when the

active queue contains only loading tasks, we have devised a simple

control that reduces the mean time that an active task remains in

the loading phase and ensures a more consistent balance of loading

and running tasks.

Implementation

The loading task~running task (LT/RT) control discriminates the

two phases of task processing and limits the number of concurrent

loading tasks. The primary LT/RT parameter is L, the maximum

number of concurrently loading tasks. Typically, L will be

determined empirically, but the optimal value is close to the

number of paging devices v~hich can be accessed simultaneously.

In complex systems, it may be necessary to consider that paging

requests may not be balanced across a set of paging devices.

The discrimination of loading tasks and running tasks is by a simple

heuristic: a task is loading until it has executed for ~" units o f

virtual time or has requested an I/O operation. We claim that this

heuristic is robust i f , is chosen to be moderately larger than the

loading phase of most tasks. Suppose that a particular task stops

loading after f ' units of virtual time, where , '--<,; although LT/RT

will prevent a new activation for an additional ~--~-' time units, the

actual delay will be minimal because the pages required by the task

are resident and the task will execute without page faults. A task

that makes an I/O request is considered to be running because an

I/O-bound. task might prevent new task activations for an

unreasonably long time.

LT/RT has three related effects. First, it reduces the mean delay

between the time that main memory becomes available to activate a

task and the time that the task enters the productive running phase.

Second, main memory is used more effectively, since fewer page

frames are committed to unproductive loading tasks. Finally,

LT/RT improves processor utilization because it maintains a more

consistent balance of loading tasks and running tasks.

A further improvement with LT/RT is possible: task deactivations

for time-slice completion should be delayed until the memory made

available by the deactivation can be used effectively. Thus, if L

loading tasks a~ active, no time-slice deactivations should be

processed. Tasks that have completed their time-slices should be

deactivated only when there are fewer than L loading tasks and

there is insufficient uncommitted memory to activate the first ready

task. This policy might further ensures a good balance of loading

and running tasks, but has not been incorporated in this study.

91

With LT/RT we can refine the paging queue strategy by processing

page reads for running tasks before reads for loading tasks. This

strategy should improve processor utilization directly by giving

preferential service to those tasks that are executing efficiently. If

the load control is operating properly, running tasks should have

relatively few page faults. Furthermore, this strategy provides an

additional load control for global policies: if memory becomes

overcommitted, all tasks will begin to page fault; the paging queue

strategy will process page faults for a subset of the active tasks and,

in effect, lower the multiprogrammi.ng level until the running tasks

cease to fault.

Note that the LT/RT control is ifidependent of the WS and CLOCK

load control mechanisms; LT/RT prevents the activation of too

many loading tasks even when they will not overcommit main

memory. Furthermore, when a task is first executed, the size of its

locality is unknown until it has completed the loading phase. Thus,

the LT /RT control can aid both WS and CLOCK load control by

delaying the activation of additional ready tasks until the memory

needs of the recently activated tasks can be measured. In

[CARR81],. we claim that LT/RT is a viable, if slightly suboptimal,

10ad control for CLOCK in the absence of any other load control.

We recognize that a task may encounter additional loading phases if

it has more than one locality and transitions among them. If such

transitions were predictable or if their onset and duration could be

reliably estimated, then the LT/RT control could also be applied to

tasks in these transition loading phases. In this study, however, we

elect to apply LT/RT only to the highly predictable loading phase

that occurs when a task is activated.

Operation of WSCLOCK with LT/RT Control

Assume, for the moment, that the CLOCK-SCan estimates the LR(p)

for each p E R with reasonable accuracy. Then, the main

dissimilarity between WS and WSCLoCK lies in the difference

between W and RW and its use in the WS load control. When a

task is activated, W (or R W) frames of memory are committed to

the task. Memory frames are allocated only as the task executes

and demands them by referencing them. If, at activation, a p £ W

f3 R' is not referenced for 0, the periodic WS-scan of WS will

remove p from W, while WSCLOCK lacks a mechanism to perform

this operation. WSCLOCK can remove inactive pages only if they

are resident. Fortunately, the following result limits the inaccuracy

of WSCLOCK to the first 0 after each activation.

Claim: If a task has executed for at least 0 units of virtual time

since activation, W and RW will be identical.

Proof." (D If p E W then it has been referenced (and made

residenO in the last 0. By the WS replacement rule, p can not have

been replaced. Thus, p E W ~ p E R and, thus, p E RW. (2) If

p ~[W then p t[R I"1 W = RW. By (1) and (2)~W = RW.

The largest discrepency between W and RW occurs immediately

after activation and decreases rapidly during the loading phase. If

LT/RT discriminates loading tasks and running tasks properly, W

and RW will be nearly equal when the loading phase ends. Since

RW C W during the loading phase, WSCLOCK underestimates the

amount of memory that a loading task may require. This implies

that WSCLOCK has a tendency to make additional activations and

overcommit memory during this phase. Thus, the LT/RT control

not only prevents overcommitment of auxiliary memory, but also

prevents overcommitment of main memory by WSCLOCK.

Experimental Studies

Methodology

WS and WSCLOCK are compared using a discrete-event computer

system simulation model. Due to space limitations, we provide

only a summary description of the model; complete details,

including a validation of the model, are found in [CARR81]. The

major aspects of the model are:

i, The workload model is a sequence of tasks chosen randomly

from a set of prototype task models.

Each task model is obtained by tracing a real program to

produce a deterministic reference string and a count of I /O

requests. The measurements are used to create the IRIM

model of program behavior (see below) and a stochastic I /O

request model. I/O requests are generated at exponentially

distributed intervals with a mean interval equal to that of the

measured program.

The configuration model includes an explicit representation

of each frame of main memory (including use- and dirty-

bits) and of each page of virtual memory. I /O devices are

modeled stochastically.

~' The operating system model is a generalized, but highly

detailed representation of a real operating system. Task

scheduling, allocation of main memory, assignment of virtual

memory pages to page frames, load control, and I /O request

scheduling are all performed explicitly.

Task execution is based on processing of the reference string,

detecting page faults when a referenced page is missing, and

setting of the use- and dirty-bits. Virtual time is calculated

exactly as the number of references successfully completed.

The simulation does not model the effort required to execute the

operating system (i,e., overhead). The purpose of the study is to

compare the basic effectiveness of the WS and WSCLOcK. For

example, there may be different methods of implementing the WS-

scan or page reclamation algorithms, with different amounts of

overhead for each implementation; we desire to minimize the

possibility that observed differences in performance are due to

extraneous implementation details.

92

The Inter-Reference Interval Model

The Inter-Reference Interval Model (IRIM) is a deterministic, trace-

driven model of program behavior. It converts the program

reference string to a more compact IRIM string, but it retains the

identity of each task virtual memory page, Thus, it is particularly

useful for the studies presented here because it permits the detailed

simulation of page and frame management under alternative

memory management policies. Due to space limitations, we provide

a summary description of the IRIM. A full description of the

IRIM, including (l) a formal definition, (2) methods to generate the

IRIM string, (3) the use of IRIM strings to model program

behavior in a multiprogram system model, (4) the validation of the

IRIM and (5) measurements of simulation efficiency with the IRIM

can be found in [CARR81].

At each moment of virtual time, the IRIM sorts each task page into

one of th:ee categories or states:

IDLE -- in a interval of to or more references in which no

reference to the page occurs.

CLEAN -- not IDLE (i.e., being referenced at least once every

to references) and is in a interval of to or

references in which no page updates occur.

DIRTY -- not CLEAN or IDLE, i.e., is being updated at least

once every to references.

The IRIM parameter to is analagous to the WS parameter 0 except

that the IRIM state transitions from CLEAN or DIRTY to IDLE occur

at the beginning of any to interval in which the page is not

referenced (similarly for the transition from DIRTY to CLEAN).

Thus the IR1M can be more closely compared to VMIN [PRIE76]

which incorporates predictive information that a page will be

unreferenced for some future interval.

The IRIM models program behavior both accurately and efficiently

under many memory management policies, including the purely

theoretical WS, practical approximate WS policies (including

WSCLoCK), and global policies such. as CLOCK or global LRU.

The IR1M is highly suitable for simulating lookahead policies such

as VMIN. The IRIM is not appropriate for simulation of policies,

such as FIFO and RAND, that make little or no effort to detect

program locality.

The 1RIM is validated by comparing full system simulations using

both ordinary reference strings and IRIM strings. Validation tests

in [CARR81] showed extremely close agreement (less than 1% error)

in both the long-term and the short-term behavior of the system.

Simulation using ordinary reference strings is extremely expensive.

running from 10 to 40 times slower than real time. With to=5000,

the IRIM reduces the length of the program reference string by a

factor of approximately 600 and the simulation runs about 10 times

faster than real time. The IRIM is essential in making the studies

described in this paper practical.

Model Configurations and Workloads

The study used three model system configurations that vary the

relative main memory size and auxiliary memory access time.

Table 1 - System Configurations

Configuration
A B C

Main Memory Frames 200 250 350

Auxiliary Memory
Access Time (rain-max) 20-40 30-50 50-80

The page size is 1024 (32-bi0 words. Auxiliary memory access

times are in units of 1000 references, ancl are uniformly distributed

between the minimum and maximum values. We assumed a

processor capable of executing 4 x 106 references per second

(equivalent to a 2 - 2 . 5 MIPS processor). Configuration B is a

typical system with a 1 megabyte main memory and a mean

auxiliary memory access time of 10 msec. Configuration A has less

memory and a faster auxiliary memory, while Configuration C is

memory-rich but has a slower auxiliary memory. These

configurations were selected because they all resulted in a

performance utilization of about 607o and seem to be realistic. To

compare memory management policies we desire a balanced system

that is neither processor-bound nor paging-bound.

Task models are derived from measurements of 8 commonly used

programs such as the Fortran and Pascal compilers, text-formatting

and sorting utilities, etc., generating about 5,000,000 memory

references for each. Each simulation is run until a total of 50 tasks

complete, which is a simulation of over 270,000,000 memory

references. To eliminate the largest source o f variation between

simulation runs, the sequence of tasks is identical in each run.

Since the typical multiprogramming level is 5, this run length

ensures that many combinations of the 8 programs are processed

concurrently at different times. Although the simulation begins in

an empty memory state and encounters many faults in the inidal

stages, measurements show that the startup transient, which lasts for

less than 20,000,000 references, has a negligible effect on the results.

Model Policies

For each configuration, the system is simulated using three memory

management policies:

1. Pure WS. - The theoretical WS policy is simulated precisely.

LR(p) is recorded each time a page p is referenced. A page is

removed from W when VT-LR(p)=O. The simulator

implements the WS 10ad control described above.

We note .that this model differs from analytical models in

which a page that is removed from W is also removed from

R, We assume that the page remains in R until it is replaced.

A reference to a page in R - W simply places that page in W

93

and does not require an I/O transfer. Models without this

capability will significantly underestimate system performance.

2. Pure WS with LT/RT. - Pure WS is modified to control the

number of simultaneously loading tasks.

3. WSCLOCK. -- The new policy described above uses (1) the

CLOCK replacement algorithm modified to implement a WS

replacement rule, (2) the LT/RT control, and (3) the WS load

control based on the resident working set.

In addition to the basic WS tuning parameter 0, the parameters and .0o

policies described below were studied and tuned to their optimal

values for the particular memory management policy. In each case, Processor
.rio

the optimal choice was the same for all three policies. Utilization

1. Task deactivation policy. When overcommitment is detected .4o

the load control chooses a task to deactivate. We considered

six different deactivation policies and discovered that optimal .a0

performance is achieved by deactivating one off

(1) the task with the smallest resident set,

(2) the last task activated, or

(3) the task with the largest remaining time-slice. Processor
.$0

Utilization
Poorer performance results i f

(1) the faulting task, ,40

(2) the task with the largest resident set, or ao

(3) a random task

is deactivated. In the studies described below, we used the

policy of deactivating the last task activated. ,co

2. LT./R T parameters. With one paging device, L = 1 gives best Proce~or
.50

performance. With two paging devices (and balanced requests Utilization

to each), L=2 gives slightly better performance than L = I

(and much better than L>2). Performance improves steadily 4o

a s , is increased from 0 to 15,000 references. Between 15,000

and 100,000 there is little change, which supports the claim ao

for robustness. This study used ,=15,000.

3. Paging Queue Order. Scheduling page reads before writes is

clearly better than FIFO. Scheduling page reads for running

tasks before reads for loading tasks also improves performance

by a small factor. This study used the latter policy.

4. Free Page Pool. Denning suggests the use of a parameter Ko
that is the desired minimum number of uncommitted pages

[DENN80]. If W is the working set size of the first ready task,

it is activated only if W + K o < M - Wactive. For the workloads
and configurations studied, Ko = 0 achieved maximum
performance and is used in this study.

Measurements

Each combination of configuration and memory management policy

was simulated for a range of values of the WS parameter 0. The

basic measure of performance is processor utilization, which is the

ratio of successfully executed references (i.e., virtual time) to total

simulated real time. The results of these simulations are displayed

in Figures 3, 4, and 5.

I Pure WS

i i , ,
400 800 1200 1600 2000

Working Set Parameter (times 1000)

(LT/RT)

f (no LT/RT)

WSCIock Figure 4. Configuration B
Pure WS

400 800 1200
Working Set Parameter (times 1000)

I t

1600

(LT/RT)

{no LT/RT)

C / Figure 5. Configuration C

, =l

400 800 1200 1600 2000

Working Set pm,ameter (times 1000)

The usefulness of the LT/RT control for pure WS is evident,

increasing processor utilization by 5 to 20%. The greatest

improvement is for the large main memory/slow auxiliary memory

configuration C. With this configuration, main memory is often

undcrutilized because tasks cannot be loaded rapidly enough.

LT/RT prevents overcommitment of auxiliary memory by loading

tasks, and it increases performance by maintainting a orderly flow of

running tasks that can be executed efficiently. With the current

technological trends, the size of main memory is increasing faster

than the speed of auxiliary memory; thus, the studies show that

LT/RT is becoming more useful.

9 4

The performance of pure WS (with LT/RT) and WSCLOCK are

very similar. On Configurations B and C, they are practically

identical. On Configuration A (small main memory/fast auxiliary

memory) WS outperforms WSCLOCK by a small margin. Table 2

gives the significant performance measures for the peak

performance for each configuration/policy combination.

'Fable 2 - Peak Performance

Configuration
A B C

WS WSCLoCK WS WSCbocK WS WSCLoCK

0 (xl000) 200 200 600 700 2000 2000

L'tiliza~ion .572 .566 .621 .616 .613 .613

Mean MPL 4.86 4 .39 5 .25 5 .01 5 .53 5 .48

Load Control
Deactivations 13 7 76 7 7 48 11 11

Page Faults 7840 6300 5437 4980 3970 3940

Pointer Travel/
Replacement 12.8 13.2 12.4

WS-Scans 3136 O 1280 0 454 0

The difference between peak performance ranges from 0 to 0.8%.

The close agreement between WS and WSCLoCK extends to the

value of 0 that optimizes performance for each configuration. At

comparable values of 8, WS had higher levels of

multiprogramming, higher page faults rates, and larger numbers of

deactivations.

Under WSCLOCK, the mean number of frames examined before

finding a replaceable page is nearly constant, even though the

configurations have a ratio of memory sizes of almost 2:1.

Compared to the cost of performing a paging I/O, the WSCLOCK

cost of examining an average of 13 frames for each page fault is

insignificant. WSCLOCK reduces overhead by eliminating the WS-

scan operations and, for some reason that is not at all clear at this

time, by reducing the number of page faults.

Conclusions

WSCLOCK, a new algorithm for virtual memory management, has

been presented. WSCLOCK employs the key notions of the working

set policy: task isolation and a local replacement strategy, combined

with the simpler implementation technique used in the global

algorithm CLOCK. The resulting algorithm has performance

properties comparable to WS.

The extensive and realistic simulation of the WS and WSCLOcK

algorithms demonstrate that WSCLOCK presents a practical

algorithm for implementing the working set concepts. We conclude

that its use in a real operating system has significant advantages

over existing implementations of either WS or global memory

management algorithms.

Bibliography

[CARP,81] R.W. Carr, Virtual Memory Management, Ph.D.
Dissertation, Stanford University, August 198[
[.Available from Computation Research Group,
Stanford Linear Accelerator Center, Stanford CA]

[CORB68] F.J. CORBATO, A Paging Experiment with the Multics
System, MIT Project MAC Report MAC-M-384, May
1968

[DENN68] P.J. DENNING, "The Working Set Model for Program
Behavior", Commun. ACM 11, 5 (May 1968), 323-333

[DENN70] P.J. DENNING, "Virtual Memory", Comput. Surv. 2, 3
(Sept. 1970), 153-189

[DENN72] P.J. DENNING; and S.C. SCHWARTZ, "Properties of the
Working Set Model", Commun. ACM 15, 3 (March
1972), 191-198

[DENN76] P.J. DENNING; K.C. KAHN; J. LEROUD1FR, D. POTTER
and R~ SURf, "Optimal MultiprogrammingY, Acta
hfonnatica 7, 2 (1976), 197-216

[DENN30] P.J. DENNING, "Working Sets Past and Present", IEEE
Trans. on Software Engineering 6, 1 (Jan. 1980), 64-84

[EAST76] M.C. EASTON; and P.A. FRANASZF.K, Use Bit
Scannhig in Replacement Decisions, RC-6192, IBM
Research, YorktOwn Heights, N.Y., Sept. 1976

[M:xRS79] W. MARSIIAI.L; and C.T. NUTE, "Analytic Modeling
of 'Working-Set Like' Replacement Algorithms, Conf.
on Simulation, Measurement, and Modeling of Computer
Systems, 1979

[MORR72] J.B. MORRIS, "Demand Paging Through Utilization of
Working Sets on the MANIAC lI ' , Commun. ACM
15, 10 (Oct. 1972), 867-872

[PRIE73] B. PRIEVE, A Page Partition Replacement Algorithm,
Ph. D. Thesis, Univ. of California, Berkeley, Dec.
1973

[PRIE76] B. PRIEVE; and R.S. FABRV, "VMIN - An Optimal
Variable-Space Page Replacement Algorithm",
Commun. ACM 19, 5 (May 1976), 295-297

[RODR73] J. RODRIGUEZ-ROSELL, "Empirical Working Set
Behavior", Commun. ACM 16, 9(Sept. 1973), 556-560

[SMIT76] A.J. SMITtt, "A Modified Working Set Paging
Algorithm", IEEE Trans. on Computers 10, (July
1980), 593-601

[SMIT80] A.J. SMITH, "Multiprogramming and Memory
Contention", Software-Practice and Experience 25, 9
(Sept. 1976), 907-9!4

95

