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Abs t r ac t  

A new virtual memory management algorithm WSCLOCK has been 

synthesized from the local working set (WS) algorithm, the global 

CLOCK algorithm, and a new load control mechanism for auxiliary 

memory access. The new algorithm combines the most useful 

feature of W S - a  natural and efti:ctive load control that prevents 

thrashing-with the simplicity and efficiency of  CLOCK. Studies are 
presented to show that the performance of  WS and WSCLOCK are 

equivalent, even if the savings in overhead are ignored. 

Introduction 

Modern memory management policies optimize performance by 

varying the space allocated to each task as its perceived need 
changes. Such policies also vary the load (i.e., the number of  active 

tasks) to achieve high levels of  multiprogramming while avoiding 

thrashing. Modern va,'iable-space, variable-load memory 

management policies have been divided into local policies and 

global ptflicies. Ideally. a local policy estimates the memory needs, 

or locality, of each task independently of other tasks and allocates 

sufficient main memory to hold the each active task's locality. A 

global policy correlates a task's memory allocation with its locality, 

but makes no explicit, independent measure of the locality, and 

does not necessarily allocate sufficient main memory for each active 

task's locality. 
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Local policies are typified by the working set (WS) policy which 

was first defined by Denning [DI~N~68] and has been the object of  

much study [DENN72, RODR73, PRIE73, SMIT76, MARS79]. Global 

policies are typified by the global least-recently-used (LRU) 

approximation algorithm CLOCK that is used in MULTICS; studies 

of  CLOCK have appeared infrequently [CORB68, EAST76]. Although 

a local policy, such as WS, isolates tasks from each other and may 
be better at preventing thrashing, a global policy is often used in 

real systems because it is simpler to implement and has less 

computational overhead. 

This paper presents a new policy WSCLOCK that combines the 

operational advantages of  WS with the simplicity and efficiency of  

CLOCK. We describe the data structures, replacement algorithm 

and load control used to implement WSCLOCK. We introduce a 

simple new Loading Task~Running Task (LT/RT) load control 

mechanism to control competiton for access to auxiliary memory; 

although LT/RT is a general control for all memory management 

policies, it is shown to be'particularly appropriate for WSCLOCK. 

Finally, we describe the use of a realistic simulation model to 

demonstrate the effectiveness of both the LT/RT control and of  

WSCLOCK. 

Our primary focus in this paper is virtual memory management 

methods in interactive systems. Interactive systems are 

characterized by large numbers of  tasks which make numerous 

small processing requests; in such systems, the amount of  memory 

used by all tasks can be many times the size of main memory and, 

thus, is where one finds the greatest advantage of  virtual memory. 

Compared to batch systems, interactive systems activate and 

deactivate tasks very frequently and perform the basic memory 

management functions more often; these systems benefit the most 

from algorithmic simplicity and efficiency. Although the methods 

presented in this paper may be most effective in interactive systems, 

they do not appear to have any disadvantages when used in batch 

systems. 
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General Model of a Virtual Memory Computer System 

This section is a brief summary of a virtual memory computer 

system model presented in [CARR81]. The model is designed 

specifically to compare scheduling, memory management, and load 

control policies on conventional large-scale computers. The model 

incorporates both an accurate representation of  program behavior 

based on measured program reference strings, and a general, but 

detailed, model of a virtual memory operating system. 

Task Model 

A task is modeled by a virtual address space P = {  Pi I i=l,2,...,m} 
of  pages and a reference string {r t I t= 1,2,...,T}. Each reference r t 
is an ordered pair (p,d), where p E P and d is Boolean variable 

which is true if the reference changes or dirties the page. The 

virtual time VT of a task is the number of  references that have been 

completed for that task. Tasks make I / 0  requests at stochastically- 

distributed intervals of  virtual time. 

Configuration Model 

The computer system configuration model contains (1) a central 

processor, (2) a main memory of M page frames, and (3) a collection 

of 1/0  devices. The central processor is implicity defined as 

capable of  executing one reference for one task in each unit o f  

virtual time. Associated with each frame are the use-bit, set when 

the frame is referenced, and the dirty-bit, set by each dirty 

reference. I/O devices are modeled as simple servers with 

independent and indentically distributed service times. 

One or more of the l /O devices is designated as an auxiliary 

memory, which contains a copy of every task page. Although the 

model permits both task and paging I/O requests to access the 

same device, the studies presented in this paper assume that paging 

devices are separated from task I/O devices. 

Operating System Model 

The operating system model has three main components: the 

scheduler, the memory manager, and the load control. 

Each task occupies one of two scheduler queues (the ready queue 

and the active queue) or is dormant. The scheduler orders the 

ready queue and assigns a time-slice to each ready task in order to 

balance objectives of response time, processor ntilization, 

throughput and externally specified priorities. The model uses a 

multi-level load-balancing queue, described in [CARR81], which can 

be parameterized to operate as any of the simpler queueing 

disciplines, such as first-in-first-out or round-robin. Tasks in the 

active queue arc selected for execution in round-robin order for 

short time quanta to approximate a processor sharing discipline. A 

task remains in the active queue until (1) the time-slice is 

exhausted, (2) the task is deactivated by the load control, or (3) the 

task completes or becomes dormant. 

The memory manager allocates main memory frames to each task, 

and requests paging I/O operations to copy pages between main 

and auxiliary memory. At any given time, each task address space 

P is partitioned into a resident set R, of pages which occupy main 

memory frames, and a missing set R'. (R' denotes the complement 

of the set R.) If the processor executes a reference (p,d) and p l[ R, 

a page fault blocks the task until the missing page is made resident 

by copying it from auxiliary memory. The model assumes demand- 

paging: a page p is loaded only after a page fault occurs for p. A p 

E R is clean whenever it is copied from main memory to auxiliary 

memory, or vice-versa; p is dirty following any reference which sets 

the frame dirty-bit." 

To achieve optimal performance in a virtual memory computer, the 

operating system seeks to maximize the number of active tasks 

without inducing thrashing. Thrashing occurs when so many tasks 

are active that the sum of their memory needs exceeds the size of  

main memory and; memory becomes overcommitted. The load 

control monitors the commitment of main memory (either directly 

or indirectly) and when memory appears to be undcrcommitted, 

load control may move tasks from the ready queue to the active 

queue; when memory appears to be overcommitted, the load 

control moves tasks from the active queue to the ready queue. 

Working Set Policy 

The reader should be familiar with the basic concepts of  the WS 

policy (see [Dt~NN68] or [DENN70]). We limit our discussion to the 

relevant details of  its implementation. 

Working Set Determination 

The WS policy defines the working set W to be all p C P 

referenced in the previous 0 units of the task's virtual time. 

Implementation of WS load control and replacement requires some 

timely mechnism to determine each task's W. If a task's page table 

contains only p E W, then the arrival of a new p (~ W is signalled 

by a page fault. To detect the departure of a page from W is more 

difficult. Typically, we require (1) a task's virtual time VT, (2) the 

last reference time LR(p) for each page, and (3) a procedure to 

detect pages for which VT-LR(p)  > 0. 

Task VT is easily obtained by summing the time intervals that the 

task has executed. Pure WS assumes some mechanism that can 

update LR(p) automatically in parallel with program exeqution, but 

practical implementations use either the page frame use-bit or 

special hardware to approximate LR(p). To use the frame use-bit, 

each p (~ R of a given task is examined by software at various times 

(e.g., at faults or at fixed intervals). The use-bit is tested and 

cleared, and if the page was recently referenced then LR(p) is set to 

the task's current VT. To detect p • W and for which VT-LR(p)  

> 0 implies a WS-scan of each p E P to find each p E W. (To 
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scan only p £ W for a given task would require the maintenance of  

an additional data structure.) The WS-scan can incorporate the 

use-bit test to approximate LR(p) with little extra cost. 

With the hardware support for WS on the Maniac II (see 

[MORR72]) each page frame has an associated counter that 

approximates the virtual-time-since-last-reference VT- LR(p) 
directly. The counter is cleared whenever the page is referenced 

and the processor automatically increments the counter of  each 

page of the task every .25 msec. that the task executes. Since the 

Maniac II has only 64 page frames, the processor time is minimal, 

but with the larger memories on modern machines, the time 

required to update thousands of counters might be excessive. The 

Maniac II implementation still requires a WS-scan to remove the 

pages for which VT-LR(p) > 0. In essence, the Maniac It 

scheme is equivalent to the ordinary use-bit method, except that the 

scanning is scheduled and performed without the overhead 

associated with a system interrupt. 

Load Control and Replacement Algorithm 

When a task is active, W = [W[ frames are committed to the task. 

The total memory commitment Wactive is the sum of  the W of all 
active tasks. The WS load control will activate a ready task unless 

the W of  the first ready task exceeds M-Wactive. 

A set A of available frames is replenished whenever a task is 

deactivated or when a WS-scan removes resident pages from an 

active ,task's W. The replacement algorithm simply chooses some 

frame in A. If A is empty, then the load control selects a task to 

deactivate and that task's resident pages are placed in A. 

Page Writing and Reclamation 

When a dirty page is placed in A, it must be cleaned before it is 

replaced. A simple approach is to couple the writing of  a dirty 

page and the reading of the page that replaces it; this method 

blocks a faulting task for the time of  two paging I/Os instead of  

one. Another approach is to replace only the clean pages in A and 

to clean the dirty pages in A when there are no outstanding page 

read requests for a device: if all pages in A are dirty, then cleaning 

operations will naturally have precedence over page reads. 

Although a page in A is eligible for replacement, it may not be 

replaced for some time. If a task references a page in A, the system 

can avoid the delay and a page-in I/O operation if it can reclaim 
the page in A. This requires a special procedure to search A each 

time a page fault occurs. 

CLOCK Policy 

CLOCK is a simple approximation of  the global LRU replacement 

algorithm [Cold~68]. All main memory page frames are ordered in 

a fixed circular list as illustrated in Figure 1. A pointer or "hand" 

always points to the last frame replaced. When a frame is needed 

to hold a missing page, the pointer i s  advanced "clockwise", 

[ • • •  
" ' ~  Last Frame 

I [ ] Reaaced 
 Ma,o 
I I M_ em°ry _L-'=-':'---~' I ]Not Replaceable 

" ~  [__L_~ N°t Replaceable 

~ Replaceable 

IAdvance CLOCKL 
Pointer I" 

~Test and Clear 
L U s e - B i t  ] 

¢ 

Clear 

I r I 
Schedule Page 
For Cleaning I 

> Replace Page J 

Figure 1. CLOCK Replacement Algorithm 

scanning frames in circular order. The use-bit is tested and cleared: 

if the ,bit was set, the frame is recently-used and is not replaced; if 

the bit was clear, the frame is not-recently-used and is replaceable if 

the page is clean. If a replaceable page is dirty, then it is scheduled 

for cleaning and is not replaced. When the CLOCK-scan locates a 

clean and not-recently-used page, the algorithm halts, leaving the 

pointer pointing to the chosen frame to mark the starting point for 

the next scan. Note that a page is never removed from R until it is 

actually replaced. 

Global policies, such as CLOCK, allow all active tasks to compete 

for main memory allocation. There is no mechanism to determine 

a task's memory needs independently of the other tasks. Thus, 

instead of  a load control based on explicit estimates of the main 

memory committment, global policies typically require an adaptive 

feedback control mechanism. For example, the control may 

monitor the page fault rate (or auxiliary memory traffic) and adjust 

the multiprograrnming level if the rate is too high or too low. 

Comparing WS and CLOCK 

The WS and CLOCK policies can be compared at many levels. At 

the implementation level, WS appears to be more complex than 

CLOCK. In particular, WS requires: 

(1) scheduling and executing the WS-scan procedure, 
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(2) memory to store LR(p) for every page of  every task, and 

(3) algorithms to maintain the set A of available pages, 

including a method to reclaim pages from A. 

The need to store LR(p) effectively doubles the size of  the page 

tables. In a system where the total of  all task virtual memory is 

many times the size of  main memory, minimization of page tables 

is an important consideration. 

The implementation of the CLOCK replacement algorithm is simpler 

and consumes less memory, but CLOCK requires an adaptive 

feedback load control mechanism that is heuristic and, compared to 

the WS load control, may be more difficult to tune. 

At the policy level, WS appears to have the advantages of  good task 

isolation, and a predictive load control. Under a global policy, a 

task's resident set depends on how actively it references its current 

locality relative to the other active tasks. Mathematical models o f  

global replacement (see [SMrrS0]) show that some tasks can 

monopolize main memory and force other tasks to execute slowly 

and inefficiently; global algorithms can also lead tb thrashing 

[I)F, NN70]. WS isolates tasks from each other and guarantees each 

active task can acquire sufficient main memory to hold its working 

set. 

At the performance evaluation level, no conclusive comparisons of  

WS and CLOCK have been performed, Analytical models are too 

weak to characterize the. differences between local and global 

memory management policies in general, or the WS and CLOCK 

policies in particular. Empirical and simulation studies have not 

addressed the problem with sufficient completeness. This work 

makes no claim that either WS or CLOCK is more effective than the 

other; it is entirely likely that a well-implemented version of either 

policy will have approximately the same performance if the 

overhead of computing the policy is eliminated. This widely-held 

conjecture is supported by studies in [CARR81]. The purpose of 

dais paper is to present a policy which is as effective as both WS 

and CLOCK and avoids many of the implementation difficulties of  

each. 

WSO,OCK 

The WSCLOCK policy combines the best features of WS and 

CLOCK. It retains the thrashing-preventative load control and task 

isolation properties of WS, but it eliminates: 

(1) the WS-scan, 

(2) the space for LR(p) for each task page, 

(3) the available frame set A, and 

(4) the page reclamation procedure. 

The WSCLOCK replacement algorithm uses the simple mechanism 

found in CI.OCK but does not require an adaptive feedback load 

control. WSCLOCK is simpler than either WS or Ct,OCK. 

Data Slruclures 

Main memory frames are arranged in a fixed circular CLOCK-like 

list. The CLOCK pointer identifies the last frame replaced in the 

previous CLOCK-SCan. Instead of an LR(p) for all p E P, LR(p) is 

defined only for the resident pages, p E R, in a storage cell 

associated with each page frame. 

When a page fault occurs, a page read request is placed on a paging 
queue. When an auxiliary memory device is available, a request for 

that device is removed and processed; at that time, the replacement 

algorithm is invoked to obtain a frame containing a clean 

replaceable page to hold the incoming page. 

Replacement Algorithm 

The WSCI,OCK replacement algorithm uses the CLOCK scanning 

method to apply the WS replacement rule as shown in Figure 2. 

To examine a frame, WSCLOCK tests and clears the frame use-bit. 

If the bit was set, I,R(p) is set to the owning task's I/T. Otherwise, 

if KT- LR(p) >_ 8 then the page is renloved from W. A page p is 

replaceable if either (1) p ¢ W , or (2) the owning task is not 

active. If a replaceable page is dirty, then it is scheduled for 

cleaning and not replaced. When WSCLOCK finds a clean 

replaceable page, it halts, and leaves the pointer at the chosen 

frame. 

Start 

I Advance CLOCK ~: 
Pointer i 

Test and Clear 
I Use-Bit I I Schedule Page 

I For Cleaning 

I Yes I No @e, 
Figure 2. WSCLOCK Replacement Algorithm 
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WSCLoCK eliminates the available page set A because it simply 

searches for and finds a replaceable page when one is needed. 

Page reclamation is eliminated because a page is not removed from 

a task's R until it is selected for replacement. Pages to be cleaned 

are placed on the paging queue with the read requests. The queue 

can be ordered by time of  request (FIFO) or by placing reads 

before writes. 

In general, it is unnecessary to remove a page being cleaned from 

R. The dirty-bit is cleared when the I/O to write the page is 

initiated; if the page is updated subsequently (even during the I/O) 

the dirty-bit is reset and the page will be cleaned again before it is 

replaced. After a page is cleaned, it will be replaced on the next 

circuit of the CI.OCK pointer unless it is referenced (and reenters 

W). Alternatively, a list of  recently-cleaned pages can be 

maintained; the replacement algorithm takes a page from this list in 

preference to performing the CLOCK-SCan. 

Load Control 

Since WSCLOCK scans only p E R, it does not approximate W if W 

contains some p ~ R. WSCLOCK approximates only the resident 

working set RW = R I"1 W. WSCLOCK load control uses the same 

rules as WS load control, but using R W  = IRWI as the memory 

commitment of each task. RWactive is defined to be the sum of  the 
RW of  the active tasks. When a task is deactivated, all of  its pages 

are eligible for replacement and, thus, RW of  a ready task is the 

value of R W when that task was deactivated. 

WSCLOCK detects overcommitment when the CLOCK-scan fails to 

find a clean replaceable page in a full circuit of  the frames. If  

there are any page cleaning requests on the paging queue, these are 

processed to produce a clean replaceable page. Otherwise, there are  

no replaceable pages, either clean or dirty, and some task must be 

deactivated to relieve overcommitment. 

LT/RT Control 

Introduction 

When a task is activated, it usually enters a loading phase in which 

it has few p E R and must load missing pages to execute efficiently. 

When the task has loaded a sufficient resident set, it enters a 

running phase in which few page faults occur and the task executes 

e~ciently. Typically, the virtual time of the loading phase is small, 

while the real time of the loading phase is disproportionately large 

because of  the paging I/O delays. 

If activations occur frequently, many loading tasks may contend for 

access to attxiliary memory. If we assume that each loading task 

has an equal opportunity to access auxiliary memory, the loading 

time is proportional to the number of concurrent loading tasks. 

Any increase in the number of  loading tasks will increase the 

duration of  each task's loading phase and, thus, will also increase 

the probability that the remaining running tasks will complete their 

time slices and be displaced by even more loading tasks. 

This tendency for an undesirable situation to become even worse is 

reminiscent of  thrashing, but arises from an overcommitment of  

auxiliary memory rather than main memory. Note that this 

phenomenon may cause the auxiliary memory to be extremely busy 

even though main memory is undercommitted; this illustrates a 

weakness of load controls based auxiliary memory traffic, such as 

the 50% rule [DENN76]. 

To avoid periods of low processor utilization that occur when the 

active queue contains only loading tasks, we have devised a simple 

control that reduces the mean time that an active task remains in 

the loading phase and ensures a more consistent balance of loading 

and running tasks. 

Implementation 

The loading task~running task (LT/RT) control discriminates the 

two phases of task processing and limits the number of concurrent 

loading tasks. The primary LT/RT parameter is L, the maximum 

number of  concurrently loading tasks. Typically, L will be 

determined empirically, but the optimal value is close to the 

number of  paging devices v~hich can be accessed simultaneously. 

In complex systems, it may be necessary to consider that paging 

requests may not be balanced across a set of paging devices. 

The discrimination of loading tasks and running tasks is by a simple 

heuristic: a task is loading until it has executed for ~" units o f  

virtual time or has requested an I/O operation. We claim that this 

heuristic is robust i f ,  is chosen to be moderately larger than the 

loading phase of  most tasks. Suppose that a particular task stops 

loading after f '  units of  virtual time, where , '--<,; although LT/RT  

will prevent a new activation for an additional ~--~-' time units, the 

actual delay will be minimal because the pages required by the task 

are resident and the task will execute without page faults. A task 

that makes an I/O request is considered to be running because an 

I/O-bound. task might prevent new task activations for an 

unreasonably long time. 

LT/RT has three related effects. First, it reduces the mean delay 

between the time that main memory becomes available to activate a 

task and the time that the task enters the productive running phase. 

Second, main memory is used more effectively, since fewer page 

frames are committed to unproductive loading tasks. Finally, 

LT/RT improves processor utilization because it maintains a more 

consistent balance of  loading tasks and running tasks. 

A further improvement with LT/RT is possible: task deactivations 

for time-slice completion should be delayed until the memory made 

available by the deactivation can be used effectively. Thus, if L 

loading tasks a~  active, no time-slice deactivations should be 

processed. Tasks that have completed their time-slices should be 

deactivated only when there are fewer than L loading tasks and 

there is insufficient uncommitted memory to activate the first ready 

task. This policy might further ensures a good balance of  loading 

and running tasks, but has not been incorporated in this study. 
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With LT/RT we can refine the paging queue strategy by processing 

page reads for running tasks before reads for loading tasks. This 

strategy should improve processor utilization directly by giving 

preferential service to those tasks that are executing efficiently. If 

the load control is operating properly, running tasks should have 

relatively few page faults. Furthermore, this strategy provides an 

additional load control for global policies: if memory becomes 

overcommitted, all tasks will begin to page fault; the paging queue 

strategy will process page faults for a subset of the active tasks and, 

in effect, lower the multiprogrammi.ng level until the running tasks 

cease to fault. 

Note that the LT/RT control is ifidependent of the WS and CLOCK 

load control mechanisms; LT/RT prevents the activation of too 

many loading tasks even when they will not overcommit main 

memory. Furthermore, when a task is first executed, the size of  its 

locality is unknown until it has completed the loading phase. Thus, 

the LT /RT  control can aid both WS and CLOCK load control by 

delaying the activation of additional ready tasks until the memory 

needs of the recently activated tasks can be measured. In 

[CARR81],. we claim that LT/RT is a viable, if slightly suboptimal, 

10ad control for CLOCK in the absence of any other load control. 

We recognize that a task may encounter additional loading phases if 

it has more than one locality and transitions among them. If such 

transitions were predictable or if their onset and duration could be 

reliably estimated, then the LT/RT control could also be applied to 

tasks in these transition loading phases. In this study, however, we 

elect to apply LT/RT only to the highly predictable loading phase 

that occurs when a task is activated. 

Operation of WSCLOCK with LT/RT Control 

Assume, for the moment, that the CLOCK-SCan estimates the LR(p) 

for each p E R with reasonable accuracy. Then, the main 

dissimilarity between WS and WSCLoCK lies in the difference 

between W and RW and its use in the WS load control. When a 

task is activated, W (or R W) frames of  memory are committed to 

the task. Memory frames are allocated only as the task executes 

and demands them by referencing them. If, at activation, a p £ W 

f3 R' is not referenced for 0, the periodic WS-scan of WS will 

remove p from W, while WSCLOCK lacks a mechanism to perform 

this operation. WSCLOCK can remove inactive pages only if they 

are resident. Fortunately, the following result limits the inaccuracy 

of WSCLOCK to the first 0 after each activation. 

Claim: If  a task has executed for at least 0 units of  virtual time 

since activation, W and RW will be identical. 

Proof." (D If p E W then it has been referenced (and made 

residenO in the last 0. By the WS replacement rule, p can not have 

been replaced. Thus, p E W ~ p E R and, thus, p E RW. (2) If  

p ~[ W then p t[ R I"1 W = RW. By (1) and (2)~W = RW. 

The largest discrepency between W and RW occurs immediately 

after activation and decreases rapidly during the loading phase. If 

LT/RT discriminates loading tasks and running tasks properly, W 

and RW will be nearly equal when the loading phase ends. Since 

RW C W during the loading phase, WSCLOCK underestimates the 

amount of memory that a loading task may require. This implies 

that WSCLOCK has a tendency to make additional activations and 

overcommit memory during this phase. Thus, the LT/RT  control 

not only prevents overcommitment of  auxiliary memory, but also 

prevents overcommitment of main memory by WSCLOCK. 

Experimental Studies 

Methodology 

WS and WSCLOCK are compared using a discrete-event computer 

system simulation model. Due to space limitations, we provide 

only a summary description of  the model; complete details, 

including a validation of  the model, are found in [CARR81]. The 

major aspects of the model are: 

i, The workload model is a sequence of tasks chosen randomly 

from a set of  prototype task models. 

Each task model is obtained by tracing a real program to 

produce a deterministic reference string and a count of  I /O 

requests. The measurements are used to create the IRIM 

model of program behavior (see below) and a stochastic I /O 

request model. I/O requests are generated at exponentially 

distributed intervals with a mean interval equal to that of  the 

measured program. 

The configuration model includes an explicit representation 

of each frame of main memory (including use- and dirty- 

bits) and of each page of virtual memory. I /O devices are 

modeled stochastically. 

~' The operating system model is a generalized, but highly 

detailed representation of a real operating system. Task 

scheduling, allocation of main memory, assignment of  virtual 

memory pages to page frames, load control, and I /O request 

scheduling are all performed explicitly. 

Task execution is based on processing of  the reference string, 

detecting page faults when a referenced page is missing, and 

setting of  the use- and dirty-bits. Virtual time is calculated 

exactly as the number of  references successfully completed. 

The simulation does not model the effort required to execute the 

operating system (i,e., overhead). The purpose of the study is to 

compare the basic effectiveness of  the WS and WSCLOcK. For 

example, there may be different methods of  implementing the WS- 

scan or page reclamation algorithms, with different amounts of  

overhead for each implementation; we desire to minimize the 

possibility that observed differences in performance are due to 

extraneous implementation details. 
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The Inter-Reference Interval Model 

The Inter-Reference Interval Model (IRIM) is a deterministic, trace- 

driven model of  program behavior. It converts the program 

reference string to a more compact IRIM string, but it retains the 

identity of  each task virtual memory page, Thus, it is particularly 

useful for the studies presented here because it permits the detailed 

simulation of page and frame management under alternative 

memory management policies. Due to space limitations, we provide 

a summary description of  the IRIM. A full description of  the 

IRIM, including (l) a formal definition, (2) methods to generate the 

IRIM string, (3) the use of IRIM strings to model program 

behavior in a multiprogram system model, (4) the validation of  the 

IRIM and (5) measurements of  simulation efficiency with the IRIM 

can be found in [CARR81]. 

At each moment of  virtual time, the IRIM sorts each task page into 

one of th:ee categories or states: 

IDLE -- in a interval of  to or more references in which no 

reference to the page occurs. 

CLEAN -- not IDLE (i.e., being referenced at least once every 

to references) and is in a interval of  to or 

references in which no page updates occur. 

DIRTY -- not CLEAN or IDLE, i.e., is being updated at least 

once every to references. 

The IRIM parameter to is analagous to the WS parameter 0 except 

that the IRIM state transitions from CLEAN or DIRTY to IDLE occur 

at the beginning of any to interval in which the page is not 

referenced (similarly for the transition from DIRTY to CLEAN). 

Thus the IR1M can be more closely compared to VMIN [PRIE76] 

which incorporates predictive information that a page will be 

unreferenced for some future interval. 

The IRIM models program behavior both accurately and efficiently 

under many memory management policies, including the purely 

theoretical WS, practical approximate WS policies (including 

WSCLoCK), and global policies such. as CLOCK or global LRU. 

The IR1M is highly suitable for simulating lookahead policies such 

as VMIN. The IRIM is not appropriate for simulation of  policies, 

such as FIFO and RAND, that make little or no effort to detect 

program locality. 

The 1RIM is validated by comparing full system simulations using 

both ordinary reference strings and IRIM strings. Validation tests 

in [CARR81] showed extremely close agreement (less than 1% error) 

in both the long-term and the short-term behavior of  the system. 

Simulation using ordinary reference strings is extremely expensive. 

running from 10 to 40 times slower than real time. With to=5000, 

the IRIM reduces the length of  the program reference string by a 

factor of  approximately 600 and the simulation runs about 10 times 

faster than real time. The IRIM is essential in making the studies 

described in this paper practical. 

Model Configurations and Workloads 

The study used three model system configurations that vary the 

relative main memory size and auxiliary memory access time. 

Table 1 - System Configurations 

Configuration 
A B C 

Main Memory Frames 200 250 350 

Auxiliary Memory 
Access Time (rain-max) 20-40 30-50 50-80 

The page size is 1024 (32-bi0 words. Auxiliary memory access 

times are in units of  1000 references, ancl are uniformly distributed 

between the minimum and maximum values. We assumed a 

processor capable of  executing 4 x 106 references per second 

(equivalent to a 2 - 2 . 5  MIPS processor). Configuration B is a 

typical system with a 1 megabyte main memory and a mean 

auxiliary memory access time of 10 msec. Configuration A has less 

memory and a faster auxiliary memory, while Configuration C is 

memory-rich but has a slower auxiliary memory. These 

configurations were selected because they all resulted in a 

performance utilization of  about 607o and seem to be realistic. To 

compare memory management policies we desire a balanced system 

that is neither processor-bound nor paging-bound. 

Task models are derived from measurements of  8 commonly used 

programs such as the Fortran and Pascal compilers, text-formatting 

and sorting utilities, etc., generating about 5,000,000 memory 

references for each. Each simulation is run until a total of  50 tasks 

complete, which is a simulation of over 270,000,000 memory 

references. To eliminate the largest source o f  variation between 

simulation runs, the sequence of tasks is identical in each run. 

Since the typical multiprogramming level is 5, this run length 

ensures that many combinations of  the 8 programs are processed 

concurrently at different times. Although the simulation begins in 

an empty memory state and encounters many faults in the inidal 

stages, measurements show that the startup transient, which lasts for 

less than 20,000,000 references, has a negligible effect on the results. 

Model Policies 

For each configuration, the system is simulated using three memory 

management policies: 

1. Pure WS. - The theoretical WS policy is simulated precisely. 

LR(p) is recorded each time a page p is referenced. A page is 

removed from W when VT-LR(p)=O. The simulator 

implements the WS 10ad control described above. 

We note .that this model differs from analytical models in 

which a page that is removed from W is also removed from 

R, We assume that the page remains in R until it is replaced. 

A reference to a page in R - W  simply places that page in W 
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and does not require an I/O transfer. Models without this 

capability will significantly underestimate system performance. 

2. Pure WS with LT/RT. - Pure WS is modified to control the 

number of simultaneously loading tasks. 

3. WSCLOCK. -- The new policy described above uses (1) the 

CLOCK replacement algorithm modified to implement a WS 

replacement rule, (2) the LT/RT control, and (3) the WS load 

control based on the resident working set. 

In addition to the basic WS tuning parameter 0, the parameters and .0o 

policies described below were studied and tuned to their optimal 

values for the particular memory management policy. In each case, Processor 
.rio 

the optimal choice was the same for all three policies. Utilization 

1. Task deactivation policy. When overcommitment is detected .4o 

the load control chooses a task to deactivate. We considered 

six different deactivation policies and discovered that optimal .a0 

performance is achieved by deactivating one off 

(1) the task with the smallest resident set, 

(2) the last task activated, or 

(3) the task with the largest remaining time-slice. Processor 
.$0 

Utilization 
Poorer performance results i f  

(1) the faulting task, ,40 

(2) the task with the largest resident set, or ao 

(3) a random task 

is deactivated. In the studies described below, we used the 

policy of deactivating the last task activated. ,co 

2. LT./R T parameters. With one paging device, L = 1 gives best Proce~or 
.50 

performance. With two paging devices (and balanced requests Utilization 

to each), L=2  gives slightly better performance than L = I  

(and much better than L>2). Performance improves steadily 4o 

a s ,  is increased from 0 to 15,000 references. Between 15,000 

and 100,000 there is little change, which supports the claim ao 

for robustness. This study used ,=15,000. 

3. Paging Queue Order. Scheduling page reads before writes is 

clearly better than FIFO. Scheduling page reads for running 

tasks before reads for loading tasks also improves performance 

by a small factor. This study used the latter policy. 

4. Free Page Pool. Denning suggests the use of  a parameter Ko 
that is the desired minimum number of uncommitted pages 

[DENN80]. If W is the working set size of  the first ready task, 

it is activated only if W + K o < M -  Wactive. For the workloads 
and configurations studied, Ko = 0 achieved maximum 
performance and is used in this study. 

Measurements 

Each combination of configuration and memory management policy 

was simulated for a range of  values of  the WS parameter 0. The 

basic measure of performance is processor utilization, which is the 

ratio of  successfully executed references (i.e., virtual time) to total 

simulated real time. The results of  these simulations are displayed 

in Figures 3, 4, and 5. 

I Pure WS 

i i , , 
400 800 1200 1600 2000 

Working Set Parameter (times 1000) 

(LT/RT) 

f (no LT/RT) 

WSCIock . . . . . . . . . . . . .  Figure 4. Configuration B 
Pure WS 

400 800 1200 
Working Set Parameter (times 1000) 

I t 

1600 

(LT/RT) 

{no LT/RT) 

C /  . . . . . . . . .  Figure 5. Configuration C 

, =l 

400 800 1200 1600 2000 

Working Set pm,ameter (times 1000) 

The usefulness of the LT/RT control for pure WS is evident, 

increasing processor utilization by 5 to 20%. The greatest 

improvement is for the large main memory/slow auxiliary memory 

configuration C. With this configuration, main memory is often 

undcrutilized because tasks cannot be loaded rapidly enough. 

LT/RT prevents overcommitment of auxiliary memory by loading 

tasks, and it increases performance by maintainting a orderly flow of  

running tasks that can be executed efficiently. With the current 

technological trends, the size of main memory is increasing faster 

than the speed of  auxiliary memory; thus, the studies show that 

LT/RT  is becoming more useful. 
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The performance of pure WS (with LT/RT) and WSCLOCK are 

very similar. On Configurations B and C, they are practically 

identical. On Configuration A (small main memory/fast auxiliary 

memory) WS outperforms WSCLOCK by a small margin. Table 2 

gives the significant performance measures for the peak 

performance for each configuration/policy combination. 

'Fable 2 - Peak Performance 

Configuration 
A B C 

WS WSCLoCK WS WSCbocK WS WSCLoCK 

0 (xl000) 200 200 600 700 2000 2000 

L'tiliza~ion .572 .566 .621 .616 .613 .613 

Mean MPL 4.86 4 .39 5 .25  5 .01  5 .53  5 .48  

Load Control 
Deactivations 13 7 76 7 7 48 11 11 

Page Faults 7840 6300 5437 4980 3970 3940 

Pointer Travel/ 
Replacement 12.8 13.2 12.4  

WS-Scans 3136 O 1280 0 454 0 

The difference between peak performance ranges from 0 to 0.8%. 

The close agreement between WS and WSCLoCK extends to the 

value of 0 that optimizes performance for each configuration. At 

comparable values of 8, WS had higher levels of 

multiprogramming, higher page faults rates, and larger numbers of 

deactivations. 

Under WSCLOCK, the mean number of frames examined before 

finding a replaceable page is nearly constant, even though the 

configurations have a ratio of memory sizes of almost 2:1. 

Compared to the cost of performing a paging I/O, the WSCLOCK 

cost of examining an average of 13 frames for each page fault is 

insignificant. WSCLOCK reduces overhead by eliminating the WS- 

scan operations and, for some reason that is not at all clear at this 

time, by reducing the number of page faults. 

Conclusions 

WSCLOCK, a new algorithm for virtual memory management, has 

been presented. WSCLOCK employs the key notions of the working 

set policy: task isolation and a local replacement strategy, combined 

with the simpler implementation technique used in the global 

algorithm CLOCK. The resulting algorithm has performance 

properties comparable to WS. 

The extensive and realistic simulation of the WS and WSCLOcK 

algorithms demonstrate that WSCLOCK presents a practical 

algorithm for implementing the working set concepts. We conclude 

that its use in a real operating system has significant advantages 

over existing implementations of either WS or global memory 

management algorithms. 
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