CS 310 BIOS Lab
Spring 2020

January 21, 2020

1 Introduction

In this lab, we will be learning how to write assembly language programs on a
bare metal (no operating system) x86 emulator. We will be using an 16-bit 8086
emulator called emu8086, which is available from the course website with Mac
and Windows versions. The 8086 came out in the mid 1970s, and it was the
processor used in the original IBM PC, which is the predescessor of all modern
laptops, desktops, and servers. Its instruction set lives on in the modern Intel
processors, and we will be learning how to write x86 assembly language in this
class because it is a ubiquitous platform. We will begin the class working with
a simple 16-bit platform.

The BIOS is a piece of software that comes with every computer and provides
some basic services before the operating system is loaded. It provides and API
that you can call to print characters to the terminal, read and write from the
hard disks, etc.

To print to the terminal in Java, we call System.out.println(), which calls
the operating system, instructing it to print the string. But before the computer
has booted up, there is no operating system. The BIOS provides basic services
before the operating system boots. The complete list of APIs supported by
the BIOS is documented in Ralf Brown’s Interrupt List (RBIL), which you can
google around for.

2 Calling the BIOS

Calling APIs in the BIOS is kind of like calling a function in Java. Just like a
function, we pass parameters that tell the BIOS API what to do. In this section,
we will learn about how to call the print character function in the BIOS. To do
so, we will pass parameters in the CPU registers that the BIOS will interpret
as a command to print a character:



Register Meaning

AH 0xOE: Command code to write to terminal
AL Character to write

BH Page Number

BL Foreground color

The following program sets up the registers with the correct values to print
the character ‘N’ to the screen and then loops forever.. Type the program
into emu8086 and verify that it works. Be sure to surround the N in single
quotes—that’s the one between the semicolon and enter keys. You should see
the character print out to the virtual console.

main:
; Set up the registers for a BIOS call to print
mov ah, 0xOe ; Write to terminal command

xor bh,bh ; Page O
mov bl,7 ; Foreground black
mov al,’N’ ; Write an N’ to the screen
int 16 ; Call the BIOS!
loop:
jmp loop ; Loop forever

Once you've gotten this working, write a program that prints your name to
the terminal.

3 Functions

In assembly language we can have functions just like in Java and other higher
level languages. For now, we’ll pass all of the parameters in the registers. We
will also use the registers to store variables. The following is an example of a
function that adds two numbers. The inputs are passed in AX and BX, and the
result is returned in AX. Try typing this program in to emu8086 and running
it.

main:

mov ax,1

mov bx,2

call add2nums

mov bx,3

call add2nums
loop:

jmp loop

add2nums:
add ax,bx
ret



This program starts in main, which loads the value 1 into AX and 2 into BX.
main then calls add2nums, which adds the contents of BX to AX and returns.
The ret instruction causes the program to jump back to main just after the
function call.

4 Converting your BIOS Call to a Function

Now we’re going to encapsulate the BIOS call from before into a function. This
way, when we want to print a character, all we have to do is call our function.
This function will be called printChar. It should take one parameter—the
character to print—in AL. A skeleton program should look like this:

main:
mov al,’N’
call printChar
mov al,’E’

call printChar

mov al,’I’

call printChar

mov al,’L’

call printChar
loop:

jmp loop

printChar:
; YOUR CODE FOR printChar HERE
ret

This program is basically just loading AL with the letters in my name and
calling printChar over and over.



