
COMP 310 Operating Systems
https://neilklingensmith.com/teaching/loyola/cs310-s2025/

NEIL KLINGENSMITH, SPRING 2025

WHAT IS THIS GUY DOING?
UNIVAC, 1951

L O Y O L A U N I V E R S I T Y C H I C A G O 3

L O Y O L A U N I V E R S I T Y C H I C A G O

19
45

ENIAC

19
58

FORTRAN

19
64

IBM 360

19
71

Intel 4004

19
97

Pentium II

20
00

Pentium 4

20
07

CUDA

19
86

MIPS R2k

20
22

RTX 4090

4

L O Y O L A U N I V E R S I T Y C H I C A G O

What is an Operating System?
• Referee

– Manage sharing of resources, Protection, Isolation
» Resource allocation, isolation, communication

• Illusionist
– Provide clean, easy to use abstractions of physical

resources
» Infinite memory, dedicated machine
» Higher level objects: files, users, messages
» Masking limitations, virtualization

• Glue
– Common services

» Storage, Window system, Networking
» Sharing, Authorization
» Look and feel

8/29/19 UCB CS162 Fa19 L1 24

5

L O Y O L A U N I V E R S I T Y C H I C A G O

Across incredibly diversity

years

Computers
Per Person

103:1

1:106

Laptop

PDA

Mainframe

Mini

Workstation

PC

Cell

1:1

1:103

Mote!

Bell’s Law: new computer class per 10 years
The Internet
of Things!

Number
crunching,
Data Storage,
Massive Inet
Services,
ML, …

Productivity,
Interactive

Streaming
from/to the
physical world

8/29/19 UCB CS162 Fa19 L1 26

6

L O Y O L A U N I V E R S I T Y C H I C A G O

Moore’s Law Officially Ended in 2016:
No longer doubling transistor density
every 18-24 months

7

L O Y O L A U N I V E R S I T Y C H I C A G O

100

101

102

103

104

105

106

107

 1970 1980 1990 2000 2010 2020

Number of
Logical Cores

Frequency (MHz)

Single-Thread
Performance
(SpecINT x 103)

Transistors
(thousands)

Typical Power
(Watts)

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2019 by K. Rupp

Year

48 Years of Microprocessor Trend Data

8

Kumar CS 162 at UC Berkeley, Summer 2020

Vast Range of Timescales

4/5/2022 9

Jeff Dean’s
“Numbers
Everyone Should
Know”

L O Y O L A U N I V E R S I T Y C H I C A G O

Advances in hardware make programming difficult
• OS Provides Consistent Abstractions
• OS Manages Resource Sharing

Key Building Blocks:
• Processes
• Threads, Concurrency, Scheduling, Coordination
• Address Spaces
• Protection, Isolation, Security
• Communication
• Persistent Storage, transactions, consistency, resilience
• Interfaces to Devices

Operating Systems Help Manage Complexity

10

L O Y O L A U N I V E R S I T Y C H I C A G O

• In 2011, smartphone shipments exceeded
PC shipments!

• 2011 shipments:
– 487M smartphones
– 414M PC clients

» 210M notebooks
» 112M desktops
» 63M tablets

– 25M smart TVs

• 4 billion phones in the world à
smartphones over next few years

• Then…

Not Only PCs connected to the Internet

1.53B in 2017

262.5M in 2017

164M in 2017

39.5M in 2017

11

L O Y O L A U N I V E R S I T Y C H I C A G O

Societal Scale Information Systems

Scalable, Reliable,
Secure Services

MEMS for
Sensor Nets

Internet
Connectivity

Databases
Information Collection
Remote Storage
Online Games
Commerce

…

• The world is a large
distributed system

– Microprocessors in everything
– Vast infrastructure behind them

Clusters

Massive Cluster

Gigabit Ethernet

Clusters

Massive Cluster

Gigabit Ethernet

8/29/19 UCB CS162 Fa19 L1 54

12

L O Y O L A U N I V E R S I T Y C H I C A G O

• There’s no universally-accepted definition.
• The one program that runs all the time is the

kernel.
• Maybe you can say “everything that comes

with a fresh OS install”
• Studying OSes is really about the Hardware/

Software interface (API) - John Kubiatowicz

What is the OS?
• Components:

• Memory Management
• I/O Management
• CPU Scheduling
• Communications? (Email?)
• Multitasking?

• What About:
• File System?
• Multimedia Support?
• User Interface/Windowing?
• Internet Browser?

13

L O Y O L A U N I V E R S I T Y C H I C A G O

Goal:
• Keep user programs from crashing the OS
• Keep user programs from crashing each other

Policy:
• Programs are not allowed to read/write memory of ther programs or of the OS

Mechanism:
• Address translation
• Dual-mode operation

Policy/Mechanism

14

1. Rosetta
2. mac OS Port

1. OS
2. Driver Support

Given we have a single processor cache that is

● 32-bit address space
● Word addressed (addresses are left shifted by 2 by adding “00” to end of address inside

the processor, this implies that it can address 2^32*4 = 16GBytes of memory)
● Cache is 16KByte in size
● Cache block size (aka cache line size) = 16 words (64 bytes = 16*4)

○ # of cache blocks = 256
● direct mapped (1-way associative)

From the above information, we can infer that the offset requires 4 bits (2^4=16), the index
requires 8 bits (2^8=256), and tag is 20 bits.

From the testing perspective, what are the interesting cases we would want to test about the
operation of the cache? What may be some corner cases?

Write a test program that generates addresses to access the cache while hitting the interesting
cases and corner cases of the cache.

What makes a good test?

● Random traffic
● Hits corner cases (interesting scenarios a totally random test will not activate)
● Hits the corner cases randomly rather than explicitly
● Come up with a reasonable number of cycles to test with each type of random traffic to

get a good tradeoff between compute resource and test thoroughness.

For the sake of simplicity, we will not put the checker code in this test program (assume the
correctness will be checked elsewhere), and for the sake of this problem, we will not be testing
the data part of the program. In another word, this is a cache traffic driver program. The
checker code will be placed elsewhere.

Take as much time as you want, but I’m expecting people to only spend 20-40 minutes on this.

Example Code in C - you can use any programming language you are comfortable with

#include <stdint.h>

#define TAG_WIDTH 20
#define INDEX_WIDTH 8
#define NUM_INDEX (1<<INDEX_WIDTH)
#define OFFSET_WIDTH 4
#define NUM_OFFSET (1<<OFFSET_WIDTH)

int main() {
/* Enter your code here.

Your code needs to use these two procedures to perform operations on the cache.
These two procedures are already defined:

call WriteToMemory(addr) to write to address and
call ReadFromMemory(addr) to read from address

Remembering we are simplifying the problem so don't worry about the write data or read
data

*/

/* Code example:
This is a bad test in more ways than one, you will need to replace or add to this
test. It's here to show you how to generate addresses to read and write to caches.
Do not assume the solution will be similar to this snippit of test code.
*/

for(int i=0;i<10000;i++) {
uint32_t addr = rand();
uint32_t data = rand();
/* uncomment this line for debugging, but final code should be commented out

Note: If this is uncommented, the test will fail */
// printf("Generated Addr: %8x\n", addr);
if(rand() % 2) {

WriteToMemory(addr, data);
} else {

data = ReadFromMemory(addr);
}

}
return 0;

18

L O Y O L A U N I V E R S I T Y C H I C A G O

• We will use GitHub Classroom. See course webpage for link.
• Fill out the survey on the course website (see schedule for today).

Turning in Assignments

19

L O Y O L A U N I V E R S I T Y C H I C A G O

• Make sure you test code a bit at a time—split into functions.
• Build pieces one at a time.
• Plan first.

Coding Guidelines

20

L O Y O L A U N I V E R S I T Y C H I C A G O

Homework Assignment

Adding a feature to your kernel

“In-Class” Activity

Informal coding practice

Homework

• Class will be front-loaded with homework
• Each week you will have two assignments

21

L O Y O L A U N I V E R S I T Y C H I C A G O

• You’re supposed to kinda know how to write C code
• You need to get good at writing C fast
• C refresher available at: https://os.neilklingensmith.com

Programming in C

22

L O Y O L A U N I V E R S I T Y C H I C A G O

The Textbook

• Free @ http://ostep.org
• Links to relevant chapters on

course webpage schedule

23

L O Y O L A U N I V E R S I T Y C H I C A G O J O I N L I N K O N C O U R S E W E B S I T E

Check Course Website

L O Y O L A U N I V E R S I T Y C H I C A G O

• No exams. Your grade is based on homework and final project.
• No partial credit for code that doesn’t compile.
• Start homework on Tuesday/Wednesday so you can get help on

Thursday in lab if you get stuck.
• NO LATE WORK WILL BE ACCEPTED
• I will drop the lowest two quizzes and homeworks at the end of the

semester.

Grading
Category Weight
Homework 40%
Quizzes 20%
Final Project 40%

25

L O Y O L A U N I V E R S I T Y C H I C A G O

W
or

kl
oa

d

TimeMid Feb Mid March Mid April

Final ProjectGratuitous Homework

Apr 29

26

L O Y O L A U N I V E R S I T Y C H I C A G O

Do what is easy and your life will be hard.
Do what is hard and your life will be easy.

- Motivational kitchen magnet

27

L O Y O L A U N I V E R S I T Y C H I C A G O

Course Website

https://neilklingensmith.com/teaching/loyola/cs310-s2025/

28

L O Y O L A U N I V E R S I T Y C H I C A G O

Lab

Thursday 4--6 PM
Doyle Makerspace

29

L O Y O L A U N I V E R S I T Y C H I C A G O

Lab Kits

• VMware Fusion (mac) or Workstation (PC)
• Check Wayback Machine link if you're having

trouble downloading.
• Or a burner laptop

Install Ubuntu this week.
30

L O Y O L A U N I V E R S I T Y C H I C A G O

Microsoft Teams Channel

Link in welcome email.

31

L O Y O L A U N I V E R S I T Y C H I C A G O

• Full year scholarship
• Plus internship or job offer
• Open to juniors and seniors
• Applications open until Feb 1

DoD Cyber Service Academy Scholarship

L O Y O L A U N I V E R S I T Y C H I C A G O

BOOTLOADERS

L O Y O L A U N I V E R S I T Y C H I C A G O

CPU

Memory

0x00000000

0xFFFFFFFF

Programmer’s Model of 386

34

L O Y O L A U N I V E R S I T Y C H I C A G O

Memory

0x00000000

0xFFFFFFFF

EAX

EBX

ECX

EDX

ESI

EDI

EBP

ESP

EIP

Data Registers Address Registers

Programmer’s Model of 386

L O Y O L A U N I V E R S I T Y C H I C A G O

EAX

EBX

ECX

EDX

ESI

EDI

EBP

ESP

EIP

Data Registers Address Registers

PROGRAMMER’S MODEL OF 386: INSIDE THE CPU

L O Y O L A U N I V E R S I T Y C H I C A G O

Data Registers Address Registers

EAX

EBX

ECX

EDX

ESI

EDI

EBP

ESP

EIP

main:
 mov eax,00000100h
 mov ebx,00000200h
loop:
 add eax,ebx
 cmp eax,00000400h
 jlt loop
 ret

PROGRAMMER’S MODEL OF 386: INSIDE THE CPU

L O Y O L A U N I V E R S I T Y C H I C A G O

00000100

Data Registers Address Registers

EAX

EBX

ECX

EDX

ESI

EDI

EBP

ESP

EIP

main:
 mov eax,00000100h
 mov ebx,00000200h
loop:
 add eax,ebx
 cmp eax,00000400h
 jlt loop
 ret

PROGRAMMER’S MODEL OF 386: INSIDE THE CPU

L O Y O L A U N I V E R S I T Y C H I C A G O

00000100

00000200

Data Registers Address Registers

EAX

EBX

ECX

EDX

ESI

EDI

EBP

ESP

EIP

main:
 mov eax,00000100h
 mov ebx,00000200h
loop:
 add eax,ebx
 cmp eax,00000400h
 jlt loop
 ret

PROGRAMMER’S MODEL OF 386: INSIDE THE CPU

L O Y O L A U N I V E R S I T Y C H I C A G O

00000300

00000200

Data Registers Address Registers

EAX

EBX

ECX

EDX

ESI

EDI

EBP

ESP

EIP

main:
 mov eax,00000100h
 mov ebx,00000200h
loop:
 add eax,ebx
 cmp eax,00000400h
 jlt loop
 ret

PROGRAMMER’S MODEL OF 386: INSIDE THE CPU

L O Y O L A U N I V E R S I T Y C H I C A G O

CPU

Memory

0x00000000

0xFFFFFFFF

Where should the program live in memory?

L O Y O L A U N I V E R S I T Y C H I C A G O

00000300

00000200

08000000

Data Registers Address Registers

EAX

EBX

ECX

EDX

ESI

EDI

EBP

ESP

EIP

 main:
0x08000000 mov eax,00000100h
0x08000006 mov ebx,00000200h
 loop:
0x08000008 add eax,ebx
0x0800000A cmp eax,00000400h
0x0800000C jlt loop
0x0800000E ret

Say I decide to put my program at 0x8000000
How does it get there?

L O Y O L A U N I V E R S I T Y C H I C A G O

SO HOW DOES THE OS GET INTO MEMORY?
AS WE'LL SEE, OUR HARDWARE CHOICES ARE NOT AWESOME.

L O Y O L A U N I V E R S I T Y C H I C A G O

Volatile👎
Loses its contents on poweroff
Must be re-initialized on each boot

Nonvolatile👍
Retains its contents on poweroff

Read/Write👍 Read Only👎
Can’t use for variable storage

DDR SDRAM (Main Memory) Flash Memory

L O Y O L A U N I V E R S I T Y C H I C A G O

CPU

0x00000000

0xFFFFFFFF

Flash chip holds BIOS

1. Hardware reads BIOS from
flash chip into DRAM.

BIOS

Memory

L O Y O L A U N I V E R S I T Y C H I C A G O

CPU

0x00000000

0xFFFFFFFF

Flash chip holds BIOS

2. BIOS reads MBR from disk into
DRAM

BIOS

MBR

Memory

L O Y O L A U N I V E R S I T Y C H I C A G O

CPU

0x00000000

0xFFFFFFFF

Flash chip holds BIOS

3. MBR reads the bootloader
from disk into memory.

BIOS

MBR

Bootloader

Memory

L O Y O L A U N I V E R S I T Y C H I C A G O

Kernel

CPU

0x00000000

0xFFFFFFFF

Flash chip holds BIOS

4. Bootloader loads the OS
kernel into memory and starts
the kernel.

BIOS

MBR

Bootloader

Memory

L O Y O L A U N I V E R S I T Y C H I C A G O

CPU

0x00000000

0xFFFFFFFF

Flash chip holds BIOS

BIOS

MBR

Bootloader

Kernel

Memory

Now Kernel has control!

L O Y O L A U N I V E R S I T Y C H I C A G O

512 Bytes

256 GByte

Disk is divided into 512-byte sectors 256 GByte Sector = 2,097,152 Sectors

M
BR …

1 2 3 4 5 6 7

20
48

20
49

20
50

20
51

20
52

20
53

20
54

20
45

20
56

20
57

20
58

20
59

20
60

20
61

20
62

20
63

20
64

20
65

20
66

20
67

20
68

20
69

20
70

20
71

…

Bootloader

First 2048 sectors (1 Mbyte) store bootloader

Partition

L O Y O L A U N I V E R S I T Y C H I C A G O

WRITING AN MBR

L O Y O L A U N I V E R S I T Y C H I C A G O

CPU

0x00000000

0xFFFFFFFF

BIOS

MBR

Bootloader

Kernel

Memory

}
}

16-bit Mode

32-bit Mode

BIOS Is Kinda Like a Set of Drivers for MBR

MBR is only 512 bytes!

BIOS provides functions for the MBR to call.

L O Y O L A U N I V E R S I T Y C H I C A G O

FUNCTION ADDRESS IS SPECIFIED BY THE SOFTWARE.

Normal Function Calls

void main() {
 printf("hello\n");
}

main:
 push hello_str
 call printf
 add sp,2
 ret

hello_str: db "hello", 0xa, 0xd, 0

1. Push function args onto stack.

2. Call function.

3. Clean up the stack.

In step 2, we specify the address of the function we want to call.

We can do this if printf() is a part of our program because the
compiler knows its address.

L O Y O L A U N I V E R S I T Y C H I C A G O

WE DON'T KNOW THE FUNCTION ADDRESS IN THE BIOS.

Calls to the BIOS

BIOS

MBR

The MBR and the BIOS are separate programs written by different
companies.

MBR wants to call functions in the BIOS, but...

The compiler of the MBR does not know the addresses of
functions in the BIOS.

Memory

L O Y O L A U N I V E R S I T Y C H I C A G O

WE DON'T KNOW THE FUNCTION ADDRESS IN THE BIOS.

Calls to the BIOS

BIOS

MBR

An interrupt vector table located at address 0 in memory holds
the addresses of functions in the BIOS.

The int instruction executes a software interrupt, which calls one
of the functions in the vector table.

The int instruction needs:
1. A function code (to tell BIOS what to do)
2. A parameter list

Parameters to BIOS calls passed in the CPU registers (not stack)

... ...

Software Int 0xAA5E

... ...

Reset Vector 0xD05A

L O Y O L A U N I V E R S I T Y C H I C A G O

USE INT INSTRUCTION WITH PARAMETERS IN REGISTERS.

BIOS Function Calls

void main() {
 printf("hello\n");
}

main:
 mov ah, 0x0e
 xor bh,bh
 mov bl,0
 mov bp,hello_str
 mov cx,5
 mov dx,0
 int 0x10
 ret

hello_str: db "hello", 0xa, 0xd, 0

1. Set up parameters in registers.

2. Call BIOS.

L O Y O L A U N I V E R S I T Y C H I C A G O

if(a < 5) {
 b += a;
 a++;
}

cmp ax,5
jge .not_less_than

add bx,ax

inc ax

.not_less_than:
...

The only thing a computer knows how to do is
execute instructions.

L O Y O L A U N I V E R S I T Y C H I C A G O A R I T H M E T I C

• Control
• Branch/Jump
• Procedure calls

• Memory Accesses
• Load/store

Kinds of instructions
• Arithmetic

• Add, subtract, multiply,
divide

• Logic
• AND, OR, NOT, XOR

• Shifts
• Left shift, right shift,

rotate, etc.

L O Y O L A U N I V E R S I T Y C H I C A G O

Read
OperandsFetch Decode Execute

Memory
Access Writeback

The only thing a computer knows how to do is
execute instructions.

RASPBERRY PI BOOT PROCESS

CPU GPU

Memory

CPU GPU

Memory
boot partition

swap partition

rootfs

CPU GPU

Memory

bootcode.bin

rootfs

boot partition

swap partition

(grub on PC)

CPU GPU

Memory

bootcode.bin

rootfs

boot partition

swap partition

CPU GPU

Memory

kernel8.img

bootcode.bin

rootfs

boot partition

swap partition

CPU GPU

Memory

kernel8.img

rootfs

boot partition

swap partition

CPU GPU

Memory

kernel8.img

init

rootfs

boot partition

swap partition

