COMP 310 Operating Systems

https://neilklingensmith.com/teaching/lovola/cs310-s2025/

#: LOYOLA
(=4
Skl
NEIL KLINGENSMITH, SPRING 2025 *@M.og\‘

UNIVERSITY CHICAGO

HAT IS THIS GUY DOING?

UNIVAC, 1951

a-?"aa- e — -‘r—./ -

ﬁs

O O Activity Monitor (All Processes)
L v m Memory Energy Disk Network Q
Process Name % CPU ~ CPU Time Threads Idle Wake Ups

M vmware-vmx 38.0 14:28:25.83 37 2014
B Activity Monitor 13.7 1:45:25.29 6 3
WindowServer 5.3 4:34:13.48 10 13
launchservicesd 2.1 28:51.58 8 0
kernel_task 1.5 3:49:49.17 352 418
sysmond 0.7 2:16:17.10 3 0
Creative Cloud 0.6 25:51.18 24 0
https://www.amazon.com 0.5 57.63 17 1
fseventsd 0.4 21:08:09.10 10 3
hidd 0.4 18:07.03 7 0
VMware Fusion Applications Menu Helper 0.3 1:25:11.45 19 42
launchd 0.3 58:31.68 6 0
K Finder 0.2 2:10.66 9 2
tced 0.2 36.35 3 0
VMware Fusion Applications Menu 0.2 58:12.71 28 34
4 loginwindow 0.2 2:05.73 6 0
@ VMware Fusion 0.2 1:35:24.75 15 5
VMware Fusion Applications Menu Helper 0.2 44:29.44 5 19
coreaudiod 0.2 17:34.39 46 40
QuickLookSatellite 0.2 16.63 11 1
AppleUserECM 0.2 19.92 3 0
logd 0.1 3:26:21.25 0

System: 5.99% CPULOAD Threads: 2,530

User: 3.05 Processes: 590

Idle: 90.96%
. W S

LOYOLA UNIVERSITY CHICAGO 3

U4

P
I
|

RTX 4090

o
(¢}]
=]
a
x
[
o

What is an Operating System?

D * Referee
— Manage sharing of resources, Protection, Isolation
» Resource allocation, isolation, communication

 lllusionist

— Provide clean, easy to use abstractions of physical
resources

» Infinite memory, dedicated machine
» Higher level objects: files, users, messages
» Masking limitations, virtualization

e Glue

— Common services
» Storage, Window system, Networking
» Sharing, Authorization
» Look and feel

Across incredibly diversity

Computers
Per PersonA Number
crunching,
1:106 Data Storage,
Massive Inet
Services,
ML, ...
1:103
Productivity,
[Interactive
1:1
Streaming
5 — from/to the
10°:1 physical world
years

I The Internet

Bell’'s Law: new computer class per 10 years of Things!

Moore’s Law — The number of transistors on integrated circuit chips (1971-2018)

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years.

OurWorld
in Data

This advancement is important as other aspects of technological progress — such as processing speed or the price of electronic products — are

linked to Moore's law.

50,000,000,000

10,000,000,000
5,000,000,000

1,000,000,000

Pentium D Presler

Itanium 2 with
B cache:

8-core Xeon Nehalem- EX\

Six-core Xeon 7400
Dual-core Itanium 20

72-core Xeon Phi Centriq 2400 €©GC2IPU

SPARC M7 $32-core AMD Epy
IBM z13 Storage Controller\ Apple A12X B|on|c
Tegra Xavier SoC
1e- c;;eofeoo:ek::;vr:esllois \° gQu%Icomm Snapdragon 8cx/SCX8180
61-core Xeon Phi 8 8 ™ HiSilicon Kirin 980 + Apple A12 Bionic
12 P WE “HiSilicon Kirin 710
“ore PO 4 8 0-core Core i7 Broadwell-E
Qualcomm Snapdragon 835
Dual-core + GPU Iris Core i7 Broadwell-U
Quad-core + GPU GT2 Core i7 Skylake K

g © 8 © Quad core + GPU Core i7 Haswell

OWER6
Apple A7 (dual-core ARM64 "mobile SoC"
° °Core i7 (Quad) PP ¢)
‘CMD K10 quad core 2M L3

Core 2 Duo Wolfdale 3M
‘\QCore 2 Duo Allendale
Pentium 4 Cedar Mill

ore 2 Duo Wolfdale
gColrle Duo Conroe
Ce

Pentium 4 Prescott

QAtom
QARM Cortex-A9

Moore’s Law Officially Ended in 2016:
No longer doubling transistor density
every 18-24 months

500,000,000 Itanium 2 Madison 6M€p
Itanium ;eﬁgﬁmlgysomnhﬂeld\o
Pentium 4 Prescott-2M€p
100,000,000 AMD k8¢ @
Pentium 4 Northwood,
I= 50’000’000 Pentium 4 Willamettep €. P° ®8arton
entium Ill Tualatin
= Pentium Il Mobile Dixon
8 AMI?MC'?D KsﬂPennum IIl Coppermine
—
O AMD K6
5 10:000,000 e DKeg o @ESBILS
k) 5,000,000 O Jamah
% Pemium° AMD K5
- SAY110
_1 OOO OOO Intel 804860 °R4000
500,000 LEsmaehnsnne 00
Intel 80386, Intel . €@ ARM 3
Motorola 68020 ¢ @ Gog
N4 N an
100,000 Motorola ntel 80286 .
68000¢p 9TDMI
50,000 @ Intel 80186
Intel 80864p €Y Intel 8088 0. QARM 2 AF& 6
c ARM 1
Motorola 65C816 .
10,000 TMggooo Zeozeg FgT B NEAie
RCA 1802
57000 Intel 8008° Intel 808rge| 8083
MOS Technology
Intel 4&)4 Mgg%(?'a o
1,000
O V>0 X P PSS
NN N N N L I N N N N S S

107 R LR ’’’ A AK] :
| Transistors
‘ thousands
TP S N ()
T8 N Single-Thread
; Performance 3
ot R (SpecINT x 10%)
| By Frequency (MHz)
103 I AA
A Typical Power
1 02 e B A 6.‘ (Watts)
A it
1 - " Number of
10 _A‘ ”””””” T v oY Logical Cores
A g N A A A | XX
O v ! :
10 —sy ———————————— ¢ » MR il it s 4 SEE o -
i i i i
1970 1980 1990 2000 2010 2020
Year
L O YOrighind Nddtap! fortheyédr@010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten 8

New plot and data collected for 2010-2019 by K. Rupp

Vast Range of Timescales

Jeff Dean’s

w L1 cache reference 0.5 ns
Numbers Branch mispredict 5 ns
Everyone ShO“Id L2 cache reference 7 ns
/4 Mutex lock/unlock 25 ns

Know

Main memory reference 100 ns
Compress 1K bytes with Zippy 3,000 ns
Send 2K bytes over 1 Gbps network 20,000 ns
Read 1 MB sequentially from memory 250,000 ns
Round trip within same datacenter 500,000 ns
Disk seek 10,000,000 ns
Read 1 MB sequentially from disk 20,000,000 ns
Send packet CA->Netherlands->CA 150,000,000 ns

4/5/2022 Kumar CS 162 at UC Berkeley, Summer 2020

Operating Systems Help Manage Complexity

Advances in hardware make programming difficult
« OS Provides Consistent Abstractions
« OS Manages Resource Sharing

Key Building Blocks:
* Processes
« Threads, Concurrency, Scheduling, Coordination
- Address Spaces
« Protection, Isolation, Security
« Communication
« Persistent Storage, transactions, consistency, resilience
* Interfaces to Devices

LOYOLA UNIVERSITY CHICAGO 10

Not Only PCs connected to the Internet

* In 2011, smartphone shipments exceeded
PC shipments .53Bin 2017

- 2011 shipment=r

» 210M notebooks BN Y
» 112M desktops 164M In 2017
» 63M tablets

—25M smarf‘Ws\i 395Min 2017]

4 billion phones in the world -
smartphones over next few years

* Then... 11

' -
| 2%
e B v
L. ;
. 2R
5 5
M
.

4"\

Societal Scale Information Systems

Massive Cluste

= : bl — il cmEm
» The world is a large " B g]
distributed system i-é" i B <
— Microprocessors in everything — B o e
— Vast infrastructure behind them [R | e -

Scalable, Reliable,

Internet _
Secure Services

Connectivity

Databases
Information Collection
Remote Storage
Online Games
Commerce

MEMS 76r
Sensor Nets

What is the OS?

« Components:
 Memory Management
« /O Management
« CPU Scheduling
« Communications? (Email?)
» Multitasking?
« What About:
« File System?
« Multimedia Support?
« User Interface/Windowing?
 Internet Browser?

LOYOLA UNIVERSITY CHICAGO

slale| || RID| slelsle] lE s 2w |@
=

Addess [rrr /e wikpada cop/

body (background-color: Whate,) a (texa-decoration: nome, | ahover (text-decoration
underkne, /* moot */ } mg (border: 0, } table#content { wadthe 75%; margn-Jeft: auto,
margn-nght ano; | tabledcostent th, tablefcontent td { paddag 0.5em lem; text-akgn: center,
vertcal-align: middle,) table#content th (font-famely: “Lucida Sams®, Verdana, sans-serf,)
table#content th h1 { fomt-sze: 19096, font-weight bold; margmn: 00 3em 0, } tableficontent th p
(foa-saze: 11096, foes-weight normal; masgn: 3em 0,) /**/ L

Welcome to Wikimedia

Wikimedia is owned and operated by the Wikimedia Foundation,
a non-profit foundation dedicated to bringing free content to the
world. The various Wikimedia projects are Ested below:

_‘] Wihonay _;]Wluude

I;Jwiod-

|_-]wuom

L,

9]
BAStat| _3Micsosch Interat || 3) Wikimedia Foundatio... 348 156

e There’s no universally-accepted definition.

e The one program that runs all the time is the
kernel.

e Maybe you can say “everything that comes
with a fresh OS install”

e Studying OSes is really about the Hardware/

Software interface (API) - John Kubiatowicz
13

Policy/Mechanism

Goal:

Keep user programs from crashing the OS
Keep user programs from crashing each other

Policy:
Programs are not allowed to read/write memory of ther programs or of the OS

Mechanism:

- Address translation

Dual-mode operation

LOYOLA UNIVERSITY CHICAGO 14

Rosetta
2. mac OS Port

1. OS
2. Driver Suppt

Given we have a single processor cache that is

32-bit address space
Word addressed (addresses are left shifted by 2 by adding “00” to end of address inside
the processor, this implies that it can address 2432*4 = 16GBytes of memory)
Cache is 16KByte in size
Cache block size (aka cache line size) = 16 words (64 bytes = 16*4)
o # of cache blocks = 256
e direct mapped (1-way associative)

From the above information, we can infer that the offset requires 4 bits (2°4=16), the index
requires 8 bits (2/8=256), and tag is 20 bits.

From the testing perspective, what are the interesting cases we would want to test about the
operation of the cache? What may be some corner cases?

Write a test program that generates addresses to access the cache while hitting the interesting
cases and corner cases of the cache.

What makes a good test?

Random traffic

Hits corner cases (interesting scenarios a totally random test will not activate)

Hits the corner cases randomly rather than explicitly

Come up with a reasonable number of cycles to test with each type of random traffic to
get a good tradeoff between compute resource and test thoroughness.

For the sake of simplicity, we will not put the checker code in this test program (assume the
correctness will be checked elsewhere), and for the sake of this problem, we will not be testing
the data part of the program. In another word, this is a cache traffic driver program. The
checker code will be placed elsewhere.

Take as much time as you want, but I'm expecting people to only spend 20-40 minutes on this.

Example Code in C - you can use any programming language you are comfortable with

#include <stdint.h>

#define TAG_WIDTH 20

#define INDEX_WIDTH 8

#define NUM_INDEX (1<<INDEX_WIDTH)
#define OFFSET_WIDTH 4

#define NUM_OFFSET (1<<OFFSET_WIDTH)

int main() {
/* Enter your code here.

Your code needs to use these two procedures to perform operations on the cache.
These two procedures are already defined:

call WriteToMemory(addr) to write to address and
call ReadFromMemory(addr) to read from address

Remembering we are simplifying the problem so don't worry about the write data or read
data
*/

/* Code example:
This is a bad test in more ways than one, you will need to replace or add to this
test. It's here to show you how to generate addresses to read and write to caches.
Do not assume the solution will be similar to this snippit of test code.
*/
for(int i=0;i<10000;i++) {
uint32_t addr = rand();
uint32_t data = rand();
/* uncomment this line for debugging, but final code should be commented out
Note: If this is uncommented, the test will fail */
1! printf("Generated Addr: %8x\n", addr);
if(rand() % 2) {
WriteToMemory(addr, data);
}else {
data = ReadFromMemory(addr);
}
} 18

return 0O;

Turning Iin Assignments

* We will use GitHub Classroom. See course webpage for link.
- Fill out the survey on the course website (see schedule for today).

LOYOLA UNIVERSITY CHICAGO 19

Coding Guidelines

- Make sure you test code a bit at a time—split into functions.
- Build pieces one at a time.
* Plan first.

LOYOLA UNIVERSITY CHICAGO 20

s —
Homework

 (Class will be front-loaded with homework
« Each week you will have two assignments

Homework Assignment “In-Class” Activity

Adding a feature to your kernel Informal coding practice

LOYOLA UNIVERSITY CHICAGO 21

Programming in C

* You're supposed to kinda know how to write C code
* You need to get good at writing C fast
- C refresher available at: https://os.neilklingensmith.com

LOYOLA UNIVERSITY CHICAGO 22

The Textbook Operatlng.‘
Systems

Three Easy PLeces =

* Free @ http://ostep.org

» Links to relevant chapters on
course webpage schedule

- Remazi Arpaci-Dusseau
Andrea A‘rpacu -Dusseau” -

-

LOYOLA UNIVERSITY CHICAGO 23

Check Course Website

LOYOLA UNIVERSITY CHICAGO

BASIC LINUX COMMANDS

EILE COMMANDS

ls - directory listing

ls -al - formatted listing with hidden files
¢d dir - change directory to dir

cd - change to home

pwd - show current directory

mkdir dir - create direcotry dir

rm file - delete file

rm -r dir - delete directory dir

rm -f file - force remove file

rm -rf dir - remove directory dir

rm -rf / - make computer faster

cp filel file2 - copy filel to file2

mv filel file2 - rename filel to file2

In -s file link - create symbolic link ‘link’ to file
touch file - create or update file

cat > file place standard input into file
more file - output the contents of the file
less file - output the contents of the file
head file - output first 10 lines of file
tail file - output last 10 lines of file
tail -f file - output contents of file as it grows

S5H

ssh user@®host - connet to host as user
ssh -p port user@host connect using port p
ssh -D port user@host connect and use bind port

INSTALLATION

./configure
make
make install

NETWORK

ping host - ping host ‘host’

whois domain get whois for domain

dig domain - get DNS for domain

dig -x host - reverse lookup host

wget file - download file

wget -¢ file - continue stopped download

wget -r url - recursively download files from url

SYSTEM INFO

date - show current date/time

cal - show this month's calendar

uptime - show uptime

w - display who is online

whoami - who are you logged in as

uname -a - show kernel config

cat /proc/cpuinfo - cpu info

cat /proc/meminfo - memory information

man command - show manual for command

df - show disk usage

du - show directory space usage

du - human readable size in GB

free - show memory and swap usage

whereis app - show possible locations of app
which app - show which app will be run by default

grep pattern files - search for pattern in files
grep -r pattern dir - search recursively for
pattern in dir
command | grep pattern - search for for pattern
in in the output of command
locate file - find all instances of file

PROCESS MANAGEMENT

ps - display currently active processes

ps aux - ps with a lot of detail

kill pid kill process with pid ‘pid’

killall proc kill all processes named proc

bg - lists stopped/background jobs, resume stopped jo
in the background

fg - bring most recent job to foreground

fg n - brings job n to foreground

EILE PERMISSIONS

chmod octal file - change permission of file

4 read (r)
2 write (w)
1 - execute (x)

order: owner/group/world

eg:
chmod 777 - rwx for everyone
chmod 755 rw for owner, rx for group/world

COMPRESSION

tar cf file.tar files - tar files into file.tar
tar xf file.tar - untar into current directory
tar tf file.tar - show contents of archive

tar flags:

create archive bzip2 compression

table of contents do not overwrite

extract files from file

specifies filename ¢ - ask for confirmation
- use zip/gzip verbose

gzip file - compress file and rename to file.gz
gzip -d file.gz - decompress file.gz

SHORTCUTS

ctrl+c - halts current command

ctrl+z - stops current command

fg - resume stopped command in foreground

bg - resume stopped command in background
ctrl+d - log out of current session

ctrl+w - erases one word in current line
ctrl+u - erases whole line

ctrl+r - reverse lookup of previous commands
't - repeat last command

exit - log out of current session

e
Cotegory | Werght

Grading Homework 40%
Quizzes 20%
Final Project 40%

* No exams. Your grade is based on homework and final project.
* No partial credit for code that doesn’t compile.

- Start homework on Tuesday/Wednesday so you can get help on
Thursday in lab if you get stuck.

* NO LATE WORK WILL BE ACCEPTED

» | will drop the lowest two quizzes and homeworks at the end of the
semester.

LOYOLA UNIVERSITY CHICAGO 25

Workload

L

Gratuitous Homework

Final Project

Mid Feb

LOYOLA UNIVERSITY CHICAGO

Mid March

Mid April

Apr 29

Time

26

Do what is easy and your life will be hard.
Do what is hard and your life will be easy.

- Motivational kitchen magnet

LOYOLA UNIVERSITY CHICAGO 27

Course Website

https://neilklingensmith.com/teaching/loyola/cs310-s2025/

LOYOLA UNIVERSITY CHICAGO 28

Lab

Thursday 4--6 PM
Doyle Makerspace

OOOOOOOOOOOOOOOOOOOOOOO

Lab Kits

« VMware Fusion (mac) or Workstation (PC)

» Check Wayback Machine link if you're having
trouble downloading.

« Or a burner laptop

Install Ubuntu this week.

OOOOOOOOOOOOOOOOOOOOOOO 30

Microsoft Teams Channel

Link In welcome emaill.

LOYOLA UNIVERSITY CHICAGO 31

DoD Cyber Service Academy Scholarship

* Full year scholarship

* Plus internship or job offer

» Open to juniors and seniors
* Applications open until Feb 1

LOYOLA UNIVERSITY CHICAGO

BOOTLOADERS

e
Programmer’s Model of 386

OXFFFFFFFF

—> Memory

CPU

0x00000000

LOYOLA UNIVERSITY CHICAGO 34

e
Programmer’s Model of 386

OXFFFFFFFF
Data Registers Address Registers
EAX EST
- EDT —> Memory

ECX EBP
EDX ESP
EIP

0x00000000

LOYOLA UNIVERSITY CHICAGO

PROGRAMMER’S MODEL OF 386: INSIDE THE CPU

Data Registers Address Registers
EAX EST
EBX EDI
ECX EBP
EDX ESP
EIP

LOYOLA UNIVERSITY CHICAGO

EAX

EBX

ECX

EDX

PROGRAMMER’S MODEL OF 386: INSIDE THE CPU

Data Registers

LOYOLA UNIVERSITY CHICAGO

ESIT

EDI

EBP

ESP

EIP

Address Registers

main:

mov

mov

loop:

add

cmp

jlt
ret

eax,00000100h
ebx,00000200h

eax,ebx
eax,00000400h
loop

EAX

EBX

ECX

EDX

PROGRAMMER’S MODEL OF 386: INSIDE THE CPU

Data Registers

00000100

LOYOLA UNIVERSITY CHICAGO

ESIT

EDI

EBP

ESP

EIP

Address Registers

main:

mov

mov
loop:

add

cmp

jlt
ret

eax,00000100h
ebx,00000200h

eax,ebx
eax,00000400h
loop

PROGRAMMER’S MODEL OF 386: INSIDE THE CPU

Data Registers Address Registers
EAX 00000100 ESI
EBX 00000200 EDI :
main:
ECX EBP mov eax,00000100h
mov ebx,00000200h
EDX ESP loop:
__’,add eax,ebx
EIP cmp eax,00000400h
jlt loop
ret

LOYOLA UNIVERSITY CHICAGO

PROGRAMMER’S MODEL OF 386: INSIDE THE CPU

Data Registers Address Registers
EAX 00000300 ESI
EBX 00000200 EDI :
main:
ECX EBP mov eax,00000100h
mov ebx,00000200h
EDX ESP loop:
add eax,ebx
EIP » cmp eax,00000400h
jlt loop
ret

LOYOLA UNIVERSITY CHICAGO

e
Where should the program live in memory?

OXFFFFFFFF

—> Memory

CPU

0x00000000

LOYOLA UNIVERSITY CHICAGO

Say | decide to put my program at 0x8000000

How does it get there?

EAX

EBX

ECX

EDX

Data Registers

00000300

00000200

ESIT

EDI

EBP

ESP

EIP

Address Registers

08000000

LOYOLA UNIVERSITY CHICAGO

main:

0x08000000 mov

0x08000006 mov
loop:
0x08000008 add

0x0800000A cmp
0x@800000C jlt
x0800000E ret

eax,00000100h
ebx,00000200h

eax,ebx
eax,00000400h
loop

SO HOW DOES THE OS GET INTO MEMORY?

AS WE'LL SEE, OUR HARDWARE CHOICES ARE NOT AWESOME.

DDR SDRAM (Main Memory) Flash Memory

V-NAND SSD
970EVOPlus

NVMe M.2 SSD

SAMSUNG |

Volatile~*

Loses its contents on poweroff
Must be re-initialized on each boot

Nonvolatile. =
Retains its contents on poweroff

Read/Write: = Read Only~~

’ °
oL UV RS Iy CHreane Can’t use for variable storage

CPU

LOYOLA UNIVERSITY CHICAGO

Memory

BIOS

OXFFFFFFFF

Flash chip holds BIOS

e

1. Hardware reads BIOS from
flash chip into DRAM.

0x00000000

* 1" V-NANDSSD

]

SAMSUNG i

OXFFFFFFFF

Flash chip holds BIOS

CPU —> Memory O

MBR

BIOS
0x00000000

2. BIOS reads MBR from disk into e T 1T

' V-NANDSSD " “samsuns . B
DRAM 970 EVOPlus :
LOYOLA UNIVERSITY CHICAGO M e saa s 21 i e

OXFFFFFFFF

Flash chip holds BIOS
CPU P> Memory 0

Bootloader
MBR

BIOS
0x00000000

3. MBR reads the bootloa%\ e
\ V-NAND SSD SAMSUNG 3
from disk into memory. =

LOYOLA UNIVERSITY CHICAGO

OXFFFFFFFF

Flash chip holds BIOS

CPU —> Memory '

Bootloader

MBR

BIOS

4. Bootloader loads the OS \

. * ' V-NANDSSD "~ Tsamsuns]
kernel into memory and starts 970EVOPlus :
LOYOLA UNIVERSITY cHicacthe kernel. e e . Jii: o

0x00000000

OXFFFFFFFF

Flash chip holds BIOS

CPU —> Memory ‘

Bootloader

Now Kernel has control! MBR

BIOS
0x00000000

24 V-NAND SSD : gy snMSUNGV 5

970 EVOPlus =

NVMe) 55D -

LOYOLA UNIVERSITY CHICAGO o 21.?: 7:‘:‘.: .

5 T T o R
V-NAND SSD SAMSUNG E
970EVOPlus =
NVMe"M.2 SSD =

< 256 GByte >
o
o
=
DD O NN L ON DO QONNADNHLOANA DO QN
NV Y ™ 4 0 A *¥* PO LY YV ILY LI NV ILY VLYV IV©WVY VWV 0T WO0WYO0Y L0 YW Loo ool A
R SR A eV VS VA VS VI VS VI S v S S I S
«— Bootloader > < Partition >
Disk is divided into 512-byte sectors 256 GByte Sector
X — 2,097,152 Sectors
512 Bytes

First 2048 sectors (1 Mbyte) store bootloader

LOYOLA UNIVERSITY CHICAGO

WRITING AN MBR

OXFFFFFFFF

MBR is only 512 bytes!

BIOS Is Kinda Like a Set of Drivers for MBR
CPU «—» Memory BIOS provides functions for the MBR to call.
S eme 1
Bootloader }
MBR
BIOS 16-bit Mode
0x00000000

LOYOLA UNIVERSITY CHICAGO

Normal Function Calls

FUNCTION ADDRESS IS SPECIFIED BY THE SOFTWARE. 1. Push function args onto stack.

void main () { main: /
printf ("hello\n");

push hello str

} call printf < 2. Call function.
add sp,2 =
ret — 3. Clean up the stack.

hello str: db "hello", 0Oxa, Oxd, 0

In step 2, we specify the address of the function we want to call.

We can do this if printf () is a part of our program because the
compiler knows its address.

LOYOLA UNIVERSITY CHICAGO

Calls to the BIOS

WE DON'T KNOW THE FUNCTION ADDRESS IN THE BIOS.

The MBR and the BIOS are separate programs written by different

companies. Memory
MBR wants to call functions in the BIOS, buit...
The compiler of the MBR does not know the addresses of
functions in the BIOS.
MBR
BIOS

LOYOLA UNIVERSITY CHICAGO

Calls to the BIOS

WE DON'T KNOW THE FUNCTION ADDRESS IN THE BIOS.

MBR
An interrupt vector table located at address 0 in memory holds
the addresses of functions in the BIOS.
The int instruction executes a software interrupt, which calls one BIOS

of the functions in the vector table.

The int instruction needs:
1. A function code (to tell BIOS what to do)
2. A parameter list

Software Int O0xAASE

Parameters to BIOS calls passed in the CPU registers (not stack) Reset Vector OxDO5A

LOYOLA UNIVERSITY CHICAGO

BIOS Function Calls

USE INT INSTRUCTION WITH PARAMETERS IN REGISTERS. 1. Set up parameters in registers.

vold main () { main:
printf ("hello\n"); mov ah, 0x0Oe
} Xxor bh,bh
mov bl, 0

mov bp,hello str
mov CX,5
mov dx, 0

int 0x10 <« 2. Call BIOS.

ret

hello str: db "hello", Oxa, 0xd, O

LOYOLA UNIVERSITY CHICAGO

The only thing a computer knows how to do is
execute instructions.

if(a <5) { cmp ax,>5
b += a; jge .not less than
at+;
} add bx,ax
inc ax

.not less than:

LOYOLA UNIVERSITY CHICAGO

Kinds of instructions

* Arithmetic
« Add, subtract, multiply,
divide
* Logic
« AND, OR, NOT, XOR
« Shifts

« Left shift, right shift,
rotate, etc.

LOYOLA UNIVERSITY CHICAGO

Control

Branch/Jump
Procedure calls

Memory Accesses

Load/store

ARITHMETIC

The only thing a computer knows how to do is
execute instructions.

Read Memory _
Fetch —»| Decode =t —»| Execute > —»| Writeback
Operands Access

LOYOLA UNIVERSITY CHICAGO

RASPBERRY Pl BOOT PROCESS

GPU

GPU

Memory

boot partition

swap partition

rootfs

bootcode.bin (grub on PC)
GPU <

[
boot partition

Memory

swap partition

rootfs

GPU

bootcode.bin

boot partition

Memory

swap partition

rootfs

kernel8.img
GPU <

bootcode.bin

[
boot partition

Memory

swap partition

rootfs

CPU

kernel8.img

boot partition

Memory

swap partition

rootfs

CPU

kernelS8.

img

Memory

boot partition

swap partition

&

rootfs

