
I/O & Interrupts
COMP 310 Operating Systems

September 16, 2022

1 Introduction

Problem: How to communicate with external devices?
From the computer’s perspective, we only have a CPU and memory.

• Special addresses in memory reserved to interact with hardware: sending commands, reading/writing data, etc.

• Interrupts from the external devices tell the computer that it needs attention.

1.1 Basic Example: Polling

User Pressed Key?No

Yes

Read Key Scancode

Transalte Scancode
to ASCII

Print ASCII to Term

I/O Port Access Type Function
0x60 R/W Data Port
0x64 R Status Register
0x64 W Command Register

1.1.1 PS/2 Status Register

7 6 5 4 3 2 1 0
PE TOE UNK UNK CD SF IS OS

1



PE Parity Error 0 indicates no error, 1 indicates error
TOE Timeout Error 0 indicates no error, 1 indicates error
UNK Chipset Specific
UNK Chipset Specific
CD Command/Data 0 indicates data written to input buffer is data

for PS/2 device, 1 indicates data written to
input buffer is data fro PS/2 Controller

SF System Flag Set by BIOS if system passes self test (POST)
IS Input Buffer Status 0 means empty, 1 means full
OS Output Buffer Status 0 means empty, 1 means full

1.1.2 Reading and Writing to IO Ports on x86

On x86, we have two special instructions to communicate with IO ports: in and out. We have to use inline assembly to
actually use the in and out instructions.

/*

* inb

*

* Reads from I/O port _port, and returns a one byte value

*/

uint8_t inb (uint16_t _port) {

uint8_t rv;

__asm__ __volatile__ ("inb %1, %0" : "=a" (rv) : "dN" (_port));

return rv;

}

/*

* outb

*

* Writes val to I/O port _port

*/

void outb (uint16_t _port, uint8_t val) {

__asm__ __volatile__ ("outb %0, %1" : : "a" (val), "dN" (_port) );

}

2 Deliverables

Write C code to do the following in your OS:

1. Read the PS/2 status register and check the LSB.

2. If the LSB is 1, then that means that means that the PS/2 controller’s output buffer contains a scancode.

3. To get the scancode, read from IO port 0x60.

4. Print the scancode to the terminal

Question: is this a good approach?
What happens when you have more than one I/O device? What about if you have some other tasks running that don’t

involve I/O? Will this approach affect responsiveness?

3 Interrupts

2



Interrupts are functions that are called by the hard-
ware to handle IO. The interrupt handling process is basi-
cally the same for all processors, but the details of the data
structures are different. Here’s how the process works in
general:

• There is an array of pointers called a vector table in
memory somewhere. Location is defined by the CPU
manufacturer.

• Each entry in the array points to a function that han-
dles a particular IO event.

• When an IO event occurs:

1. We stop executing the user code

2. Push an interrupt stack frame onto the stack

3. Jump to the address in the vector table and run
the interrupt handler.

4. Pop the interrupt stack frame and return to user
code.

Push interrupt stack
frame on user stack

Read IDT to �nd
handler address

Jump to interrupt
handler

Push EAX, EBX,
ECX, etc onto stack

Handle the interrupt
(in so�ware)

Pop EAX, EBX,
ECX, etc o� of stack

 Use iret inst to pop
interrupt stack frame

Continue executing
user program

Executing
user program Interrupt

Arrives

Done by Hardware Done by So�ware

Interrupt Stack Frame When the i386 takes an interrupt, it needs to save the context of the program that was running
immediately before the interrupt arrived so it can pick up where it left off after it finishes processing the interrupt. The CPU
creates an exception stack frame to store important registers such as the ESP, EFLAGS, and EIP. The user registers (EAX, EBX,
ECX, etc) should be saved by software in the interrupt service routine. The diagram below shows the structure of the i386
exception stack frame.

ESP+16 unused SS

ESP+12 ESP

ESP+8 EFLAGS

ESP+4 unused CS

ESP+0 EIP

3.0.1 Installing an Interrupt Vector on i386

The i386 interrupt descriptor table (IDT) is an array of structs that point to handlers for various I/O events. The IDT can
live anywhere in memory. Usually we will just create an array to store it. We have to tell the processor where it is using the
lidt instruction, which loads the base address of the IDT. Descriptors in the array (for some reason descriptors are called
“gates” by Intel) have the following format:

63 48

offset

47 46 45 44 43 40 39 32

P DPL 0 Type Reserved

31 16

Segment

15 0

offset

3



Field Description

Offset A 32-bit value, split in two parts. It represents the address of the entry point
of the Interrupt Service Routine.

Selector A Segment Selector with multiple fields which must point to a valid code seg-
ment in your GDT.

Type A 4-bit value which defines the type of gate this Interrupt Descriptor represents.
There are five valid type values:
0101: Task Gate, note that in this case, the Offset value is unused and should
be set to zero.
0110 16-bit Interrupt Gate
0111: 16-bit Trap Gate
1110: 32-bit Interrupt Gate
1111: 32-bit Trap Gate

DPL A 2-bit value which defines the CPU Privilege Levels which are allowed to
access this interrupt via the INT instruction. Hardware interrupts ignore this
mechanism.

P Present bit. Must be set (1) for the descriptor to be valid.

A C data struct that implements an interrupt gate is given below.

// A struct describing an interrupt gate.

struct idt_entry

{

uint16_t base_lo; // The lower 16 bits of the address to jump to when this interrupt fires.

uint16_t sel; // Kernel segment selector.

uint8_t always0; // This must always be zero.

uint8_t flags; // More flags. See documentation.

uint16_t base_hi; // The upper 16 bits of the address to jump to.

} __attribute__((packed));

4


