CS 310

FILESYSTEMS

LOYOLA

IIIIIIIIIIIIIIIII

%M o‘@‘

MAGNETIC DISKS

HARD DISK PLATTER

.
“‘---IIIII......
a,
a
-

‘e

EEmgn
guuns LN]
v e,
L}
.

snEEEENE,,
Ll]
L]

Concentric tracks called cylinders

L4

e

sEaEEmg
oun®
4

eEEmy
st Ly}
. ™,

LLLLE TR N

et
L
‘e

.
oy n®
0. Emn

. .
] .

a .

*e “fagpunr®
‘e

®

‘a

.
LTI L e

.

a .
. .
"Sagpguunt®

a %

. .
. .
"Yaapguunst®

.
.
.
......IIII--“‘

&y
L]
LTI

HARD DISK PLATTER

‘----..llllll..
Ny
']

e
-----.lllll...
o,
.
Ce,

®
o anEEEEEN,,
e fre,

o,

‘e

---ll..l...
-
L4

“‘_..---....
o
s

R LLLLE e
L
L

sEEEN
v® oy

*
.
®

.
.
-“‘

.
l-“‘

o*
-“‘

Hemgn ®

Each CVE' e
segme.ntS'C?:

.

ay

..'UMI.QE"“‘
ﬁ.l§
42"é3'

(72]

"l-..-

“aa, IIJ:L.--
=

...Z__B'_

o
L]

....l‘
b4

Asect’o store

‘ 0

L'n
P:h'..ga

S
e

e,
LETTTT L o

“*es..A sectol’ |s‘.the‘ atc
ta,, 'mmo‘FY ‘On’a’m‘ag

.
*

]
a
.......--|l‘ PR 2 *

.
.
.
...llllll.--“‘

t,
]
.lllllll

&y
L]
"fasagamnnn

= .
LOGICAL BLOCK ADDRESSES

Cylinder [Head —sector |LBA

0 0 1 0 LBA=(CxHPC+H)xSPT+(S-1)
0 0 2 1

0 0 3 2

S SR

0 1 1 63

INTRO TO FLASH MEMORY CELLS

N-CHANNEL MOSFET

Source

Vop
Drain
Gate \

— GND

= .
N-CHANNEL MOSFET

®

@© Charges get stuck @ drain

J_‘ GND

L& <

oV

= .
N-CHANNEL MOSFET

1V

P-CHANNEL MOSFET

Same as N-Channel MOSFET, but
you apply a voltage to turn it off.

Vop

Source

1-
= [~

— GND

Gate

COOL THINGS YOU CAN MAKE: INVERTER

Input Output

— GND

COOL THINGS YOU CAN MAKE: INVERTER

—

Input = 0V Output

‘ prr / N-Channel MOSFET is OFF

|/ P-Channel MOSFET is ON

— GND

COOL THINGS YOU CAN MAKE: INVERTER

g
—

Input = OV Output =1V

— GND

COOL THINGS YOU CAN MAKE: INVERTER

—

Input = 1V Output

‘ —_— / N-Channel MOSFET is ON

|/ P-Channel MOSFET is OFF

— GND

COOL THINGS YOU CAN MAKE: INVERTER

J

@ ®
® ®

Input = 1V

Output =0V

= .
HOW AN N-CHANNEL MOSFET IS MADE

grO_uré-H 2 16 17 18
v

1 1 2
H He
2 | 3|4 51 ell71(81l 9[10
Li || Be B N || Ol F ||Ne
3 [111112 1 14 (95 (|16 || 17 || 18
Na || Mg ANR|| Si S || ClI [| Ar
4 |191] 20 21 (|22 ([23 (|24 || 25 (|26 || 27 || 28 || 29 || 30 || 31 33 (34|35 || 36
K || Ca Sc || Ti [[V||Cr|[[Mn|[Fe||Co|| Ni|[Cul|Zn || Ga e || As || Se || Br || Kr
5 [37]]38 39 (140 |[41 (|42 ||43 (|44 ||45([46 || 47 || 48 (|49 || 50 || 51 ||52 |53 || 54
Rb [| Sr Y [| Zr [[Nb|[Mo|| Tc [|Ru [|Rh |[Pd |[Ag ||Cd || In [[Sn|[Sb||Te || I || Xe
6 |95(|56 (*|71||72||Z3 (|74 (| Z5|(76 || 77 || 78 (|79 || 80 |[81|/82|| 83|84 |85]||86
Cs || Ba Lu || Hf || Ta || W |[Re |[[Os || Ir || Pt [[Au [[Hg || Tl [| Pb || Bi || Po || At || Rn
7 |87 || 88 [*[103{[104|[105(|106(|107((108|{109|{110(|111{|112{(113]{114|{115(|116((117|[118
Fr ||Ra |*| Lr || Rf ||Db||Sg ||Bh || Hs || Mt||Ds||Rg || Cn |[Nh || FI [[Mc||Lv |[[Ts |[|Og

*1 571158 [|59(160|[61(/ 62|63/ 64||65/66||67||68 (69|70

La || Ce || Pr [[Nd||[Pm]||Sm||Eu ||Gd || Tb || Dy || Ho || Er [[Tm || Yb

*189 1190 [[91(192([93 (1941|9596 (|97 |98 (|99 ([100((101]{102

*[Ac [[Th [[Pa || U [[Np||Pu [|JAm||Cm|| Bk || Cf || Es || Fm||Md|| No

HOW AN N-CHANNEL MOSFET IS MADE

Gate

Drain Source

A 4

N
s

Silicon Substrate
n-Doped Channel

HOW AN N-CHANNEL MOSFET IS MADE

@@
om Lo S98

e e e
e © o
o o

HOW AN N-CHANNEL MOSFET IS MADE

@® @®
Pp @ ®g @

@@
om Lo S98

e e e
e © o
o o

.a.l
-
= Ce,
. A K F F F ..
- 4 M R\xp
-
y -
‘v .\‘ ’ v
= I'.'-
ok

-

A Rk 2 B 2 F F F

o e ™3

= real(psi)
L e imag(psi)
20 —_— V(x)
—— Erange
15
L
= 10|
7
Q.
5 -
0
1 | |

20

= .
N-CHANNEL MOSFET FLASH MEMORY CELL

|

Floating Gate

= .
N-CHANNEL MOSFET FLASH MEMORY CELL

Vop

@ ®
@ Apply large Positive Voltage (12V)
—Ji\ MOSFET Stuck Open
—— GND

HOW FILESYSTEMS WORK

@

readandwrite
syscalls

14

Disk driver I

Il

Userland: gets random access to data in
files

OS: Provides filesystem abstraction so
programs don’t have to deal with sector-
level storage

Disk: Provides storage at the granularity
of a sector (512 bytes)

Have you noticea the Osnasaveryow |
Have you noticed the OS has a very low
opinion of you?

It doesn’t think you can:

*manage your own memory

ekeep track of your own persistent storage
(files)

edeal with your own I/O

e etc. etc. etc.

Exterminate All Operating System Abstractions

Dawson R. Engler M. Frans Kaashoek
{engler, kaashoek } @lcs.mit.edu

MIT Laboratory for Computer Science | This is What the
OS thinks of you.

545 Technology Square

Cambridge, MA 02139

ABSTRACT INTERFACE THAT FILESYSTEMS PROVIDE

These files are on a / IMG_3330.jpg IMG_3329.jpg @

different physical device

ADMINISTRIVIA

« Homework 7 Due Today
* Final Project Coming Up

ADMINISTRIVIA

« Homework 7 Due Today
* Final Project Coming Up

ENTREPRENEURSHIP
NETWORKING
EVENT - 4,,,§

PRESENTED BY:

IGNITE LAB B

Come enjoy pizza with us
and connect with other
students who are also
interested in

entrepreneurship. No prior October 23rd
experience is necessary! 5:00-6:00PM
Cuneo 111

@luc_ignite_lab @ www.ignitelab.org ® @LUC_Ignite_Lab

Garbage

Compaction
>

o ————
o ———

perf record -e block:block_rq_issue -ag

e
ls -1 perf.data
—IW——————— 1 root root 3458162 Jan 26 03:03 perf.data

perf report

[...]

Samples: 2K of event 'block:block rq_ issue'

Event count (approx.): 2216

#

Overhead Command Shared Object Symbol

LINUX PERF

32.13% dd [kernel.kallsyms] [k] blk peek request
|
--- blk_peek_request
virtblk request
_ blk run_queue
* Tracks hardware events
--98.31%-- queue_unplugged
blk_flush plug list

--91.00%-- blk_queue_bio
generic_make_request
submit_bio
ext4_io_submit

--58.71%-- ext4_bio_write_page
mpage_da_submit_io
mpage_da_map_and_submit
write_cache_pages_da
ext4_da_writepages
do_writepages
_ filemap_ fdatawrite_range
filemap_flush
ext4_alloc_da_blocks
ext4_release_file
_ fput

fput
task work_run
do_notify resume
int_signal
close
0x0

--41.29%-- mpage_da_submit_io

ON DISK DATA STRUCTURES LA
/
0 7 4k block
/ (8 512-byte sectors)
3 15

16 23

= .
ON DISK DATA STRUCTURES

0 7 Data Region consists of
blocks that can be
allocated for file data.

Data blocks can’t be
8 15 subdivided for small files.

16 23

= .
ON DISK DATA STRUCTURES

O 7 An inode tells us where to
find the data blocks for a
| | | | | particular file.

16 23

= .
ON DISK DATA STRUCTURES

7 Data bitmap and inode
bitmaps tell us which data
| | | | blocks and inode blocks
are available.

15

16 23

ON DISK DATA STRUCTURES

15

16

23

Superblock tells us
parameters of the
filesystem like how many
inode blocks and data
blocks there are and where
to find the root inode.

When mounting a
filesystem, the OS always
reads the superblock first
to find out where all the
other data structures are.

INODES
Size _____Name ____|Descripton

2 bytes mode can this file be read/written/executed?
2 bytes uid owner of this file

4 bytes size How many bytes in this file?

4 bytes time Time this file was last accessed

4 bytes ctime Time this file was created

4 bytes mtime Time this file was modified

4 bytes dtime What time was this inode deleted?

2 bytes gid Group that owns this file

2 bytes links_count How many hard links to this file

4 bytes blocks How many blocks allocated to this file
4 bytes flags How should ext2 use this inode?

4 bytes osdl Available for use by OS

60 bytes block Set of 15 disk pointers

4 bytes generation file version (used by NFS)

4 bytes file_acl used for permissions

4 bytes dir_acl permissions...

CREATING LARGE FILES

0

S

8 \\.\\
D D | D

16

If an inode can only point
to 4 data blocks, max file
size is 16 kbytes (4 * 4k).

Multi-level index uses data
blocks to hold extra index
pointers.

If each data block can hold
1024 pointers, max file size
with inode + 1 data block is
(4+1024)*4k = 4112 k

inum__record length _|string length__ffilename
5 12 2 .

2

12
13
24

12 3
12 4
12 4
36 29

Each Row is called a directory entry

foo
bar
foo_bar version_12 27 20.txt

HARD LINK: MAKE ANOTHER DIRECTORY ENTRY POINT TO
SAME INODE

inum _____ record length |string length _filename |
5 12 2 :

2 12 3 ..

12 12 4 foo

13 12 4 bar

24 36 29 foo_bar version_12 27 20.txt

12 15 9 foo_link

Limitations of hard links:
1. You can’t create hard links to directories (to prevent cycles).
2. You can’t create a hard link to a file on another partition.

foo_link and foo both point to inode 12

= .
SYMLINKS/SOFT LINKS/SYMBOLIC LINKS

inum _____ record length |string length _filename |
5 12 2 :

2 12 3 ..

12 12 4 foo

13 12 4 bar

24 36 29 foo_bar version_12 27 20.txt

12 15 9 foo_link

Limitations of hard links:
1. You can’t create hard links to directories (to prevent cycles).
2. You can’t create a hard link to a file on another partition.

foo_link and foo both point to inode 12

JOURNALING AND WRITE INCONSISTENCIES

= .
WHAT HAPPENS WHEN POWER FAILS MID-WRITE?

Bitmaps

inode data inodes

I A >

SUPPOSE WE WANT TO APPEND A 4K BLOCK TO FILE

1. Allocate a data block from the data bitmap.

Bitmaps

inode data inodes

L L >

SUPPOSE WE WANT TO APPEND A 4K BLOCK TO FILE

1. Allocate a data block from the data bitmap.
2. Set the direct pointer in the file’s inode to point to the new data block.

Bitmaps

inode data inodes

L L >

SUPPOSE WE WANT TO APPEND A 4K BLOCK TO FILE

1. Allocate a data block from the data bitmap.
2. Set the direct pointer in the file’s inode to point to the new data block.
3. Write the new data block.

Bitmaps

inode data inodes

Da Db

POSSIBLE FAILURE SCENARIOS

Just the data block gets written, not the inode or bitmap

Just the inode gets written, not data or bitmap (inconsistency)
Just the bitmap gets written, not inode or data (inconsistency)
inode and bitmap are written, but not data (garbage data)
inode and data get written, but not bitmap (inconsistency)
bitmap and data get written but no inode (inconsistency)

o0~ =

= .
JOURNALING ALLOWS US TO RECOVER

Bitmaps

inode data inodes journal

I A :

= .
JOURNALING ALLOWS US TO RECOVER

Note: writes of 512 byte sectors are atomic.

journal

= .
JOURNALING ALLOWS US TO RECOVER

journal TxB

= .
JOURNALING ALLOWS US TO RECOVER

journal TxB inode

= .
JOURNALING ALLOWS US TO RECOVER

journal TxB inode | bitmap

= .
JOURNALING ALLOWS US TO RECOVER

Ensure that writes have been committed to disk

|

journal TxB inode | bitmap| Db

POSSIBLE FAILURE SCENARIOS: JOURNALING

1. Power fails during journaling before TXE commits: transaction is lost, but fs stays consistent.
2. Power fails after TXE commits: recover the transaction from journal.

3. Power fails after journal commits while updating on-disk structs: recover transaction from journal.

journal TxB inode | bitmap| Db TxE

ADMINISTRIVIA

 Homework 8 (FAT FS) Due Next Wednesday 10/30

« Canonical Kernel Dev Screening Questions on
website.

* Project Proposals Due 11/4
 Ignite Lab Networking Wednesday 10/23, Cuneo 111

FINAL PROJECT IDEAS: FILESYSTEMS

* Filesystems tend to scatter data all over the place (inode table,
inode bitmap, directory entries all in different locations).

« Does this slow data accesses down? Benchmark to find out.
* Filesystems are needlessly complex for many applications.
« Can we get away with no directories in some cases?

 Is there a better way to organize data on disk (other than n-
ary tree, which is inefficient)?

WHAT TO TAKE NEXT

e« COMP 410 Advanced OS

* Not just cross-listed combined section with grad
students and undergrads.

* Not offered next semester.
« COMP 445 loT Device Application Security
« Offered next semester, tenatively T/TH around noon

FAT FILESYSTEM

File

File

Boot : : Root

Seocotor Allocation |Allocation Direoc(:or Data Data Data Data Data Data
Table #1 |Table #2... y

Reserved FAT Region Root

Sector Directory

Region

BOOT SECTOR (SUPERBLOCK)
Offset |Size |Description |

0x00 3 Jump Instruction. Unused by you.
0x03 8 OEM Name (name of formatting program)
Ox0B 2 Bytes per sector

0x0D 1 Sectors per cluster (cluster = block)
OxOE 2 Number of reserved sectors

0x10 1 Number of FATs

0x11 2 Number of root directory entries
0x13 2 Total sectors

0x15 1 Media descriptor. Unused by you
0x16 2 Sectors per FAT

0x18 2 Sectors per track

Ox1A 2 Number of heads

0x1C 4 Number of hidden sectors

0x20 4 Total sectors in the FS

0x24 1 Logical Drive Number

0x25 1 Reserved

0x26 1 Extended Signature

0x27 4 Serial number

0x2B 11 Volume label

0x36 8 FS type

ROOT DIRECTORY ENTRY
Offset ______Size ___|Descripton |

0x00 8 Short file name

0x08 3 File extension

Ox0B 1 File attributes

0x0C 1 Attributes. Not needed by you

Ox0D 1 First character of a deleted file

OxOE 2 Create time. Not needed by you.

0x10 2 Create date. Not needed by you.

0x12 2 Last access date

Ox14 2 File access rights bitmap. Not needed by you.
0x16 2 Last modified time. Not needed by you.
0x18 2 Last modified date. Not needed by you.
Ox1A 2 Start of file in clusters.

Ox1C 4 File size in bytes.

= .
MOUNTING YOUR FAT FS

1. Read the boot sector. Use the info in it to find the root
directory entry on disk.

2. Read the root directory entry. lterate thru each RDE
searching for a match with the filename you’re looking
for. When you find the match, the RDE will tell you the
data cluster where you can find the file’s data.

3. Read the FAT. If your file takes up more than one data
cluster, the FAT will contain linkages to the other ones.

What sector do we read to get

EXAMPLE: BOOT SECTOR (SUPERBLQGK)

Offset 'Size [Value |Description
0x00 3 OxEB 0x3C 0x90 Jump Instruction. Unused by you.
0x03 8 “mkfs.fat” OEM Name (name of formatting program)
Ox0B 2 0x0200 Bytes per sector

0x0D 1 0x04 Sectors per cluster (cluster = block)
OxOE 2 0x0004 Number of reserved sectors

0x10 1 0x02 Number of FATs

0x11 2 0x0002 Number of root directory entries
0x13 2 0x0080 Total sectors

0x15 1 OxF8 Media descriptor. Unused by you
Ox16 2 0x0020 Sectors per FAT

0x18 2 0x0020 Sectors per track

Ox1A 2 0x0002 Number of heads

0x1C 4 0x00000000 Number of hidden sectors

0x20 4 0x00000000 Total sectors in the FS

0x24 1 0x80 Logical Drive Number

0x25 1 0x00 Reserved

0x26 1 0x29 Extended Signature

0x27 4 0xD52A5875 Serial number

0x2B 1 “NO NAME” Volume label

0x36 8 “FAT16” FS type

= s s e
RDE Location = # FAT Tables * #Sectors/FAT + # Hidden Sectors + # Reserved Sectors

RDE Location=2*32+0+4 =68

Offset 'Size [Value |Description
0x00 3 OxEB 0x3C 0x90 Jump Instruction. Unused by you.
0x03 8 “mkfs.fat” OEM Name (name of formatting program)
Ox0B 2 0x0200 Bytes per sector

0x0D 1 0x04 Sectors per cluster (cluster = block)
OxOE 2 0x0004 Number of reserved sectors

0x10 1 0x02 Number of FATs

0x11 2 0x0002 Number of root directory entries
0x13 2 0x0080 Total sectors

0x15 1 OxF8 Media descriptor. Unused by you
Ox16 2 0x0020 Sectors per FAT

0x18 2 0x0020 Sectors per track

Ox1A 2 0x0002 Number of heads

0x1C 4 0x00000000 Number of hidden sectors

0x20 4 0x00000000 Total sectors in the FS

0x24 1 0x80 Logical Drive Number

0x25 1 0x00 Reserved

0x26 1 0x29 Extended Signature

0x27 4 0xD52A5875 Serial number

0x2B 1 “NO NAME” Volume label

0x36 8 “FAT16” FS type

ROOT DIRECTORY ENTRY #1
Offset ISize \Value ______________ |Description

41 6a 00 75 00 6e 00 6b (“Aj.u.n.k”) Short file name

0x00
O0x08
Ox0B
O0x0C
Ox0D
OxOE
0x10
Ox12
Ox14
Ox16
Ox18
Ox1A
Ox1C

A NDNNNNNNRERERERE WO

00 2e 00
OxOF
0x00
0x3C ('t’)
0x0074
0x0078
0x0074
0x0000
OxFFFF
OxFFFF
0x0000
OxFFFFFFFF

File extension

File attributes

More Attributes. Not needed by you
First character of a deleted file

Create time. Not needed by you.
Create date. Not needed by you.

Last access date

File access rights bitmap. Not needed by you.
Last modified time. Not needed by you.
Last modified date. Not needed by you.
Start of file in clusters.

File size in bytes.

= .
ROOT DIRECTORY ENTRY #2

Offset |Size Value |Description |
Ox00 8 4a 55 4e 4b 20 20 20 20 (“JUNK “) Short file name

Ox08 3 54 58 54 (“TXT”) File extension

Ox0B 1 0x20 File attributes

Ox0C 1 0x00 More Attributes. Not needed by you

Ox0D 1 0x19 First character of a deleted file

OxOE 2 Ox7CA9 Create time. Not needed by you.

Ox10 2 0x5270 Create date. Not needed by you.

Ox12 2 0x5270 Last access date

Ox14 2 0x0000 File access rights bitmap. Not needed by you.
Ox16 2 Ox7CA9 Last modified time. Not needed by you.

Ox18 2 0x5270 Last modified date. Not needed by you.

Ox1A 2 0x0000 Start of file in clusters.

Ox1C 4 0x00000000 File size in bytes.

