
CS 310 Homework 1: Clearing the bss Segment in your Kernel

Fall 2024

September 16, 2024

1 Introduction

In this homework assignment, you’re going to build some preliminary stuff for your kernel. The first thing you’re going to
do is to clear out your kernel’s bss segment (more on that later). Then you’re going to write some linked list drivers, which
we are going to use a lot in this class.

The deliverables of this homework assignement are:

1. Write a function that writes zeros to the bss segment of your kernel, and call that function from either kernel main

or from the assembly language startup code (extra credit for calling it from the assembly code). You can put your
function in kernel main.c.

2. Create a new pair of files called list.c and list.h.

• In list.c, write a pair of functions list add() and list remove() that add and remove elements from a linked
list.

• In list.h, define a general purpose struct for a linked list element.

To turn your homework in, make sure to git add your new files to your Pi OS git repo. Commit and push all the changes
you made to GitHub.

1.1 Types of Variables

There are two kinds of variables: globals and locals. They are stored and allocated differently in the computer.

• Global variables have one fixed address in memory that is assigned by the compiler. Any time your refer to a global
variable by name in your program, the compiler translates that reference to the address of the global variable. The
reason a global variable is global is that it has the same address in memory no matter what function you reference it
from (this is not true of locals). For example, consider the following code:

unsigned int global_variable;

void setGlobalValue() {

global_variable = 0x12345678;

}

void main() {

global_variable = 0;

setGlobalVariable();

printf("%x\n", global_variable);

}

1

This program will print 12345678. global variable is assigned some address in memory by the compiler, say 0x80800,
and any time a function reads or writes the value of global variable, all access to the variable are to address 0x80800.
We set the value of global variable in setGlobalValue, which writes to address 0x80800. When we read the value
back in main, we also read from the same address, 0x80800, and get the same value.

• Local variables are allocated on the stack. They are created when a functions starts executing and deleted when it
returns.

void setLocalValue() {

int local_variable = 0x12345678;

}

void main() {

int local_variable = 0;

setLocalVariable();

printf("%x\n", local_variable);

}

This program will print 0. It creates two different variables, both named local variable, allocated in different memory
addresses—one on the stack frame of setLocalValue and the other on the stack frame of main. When one function
reads or writes to its local variable, the value of the other function’s local variable doesn’t change. Check out
the reading about stack frames on the course website for more information about how these are allocated.

1.2 Structure of a Binary in Memory

In memory, your binary consists of two parts: code and variables. The code is the machine instructions that your program
executes. The variables are...uuh..variables. A linker script is a file that tells the compiler what address each of these types
of data should be located at. In Pi OS the linker script is called kernel.ld. The linker script defines some symbols that you
can use kind of like variables in your C program. For example, there are variables in the linker script called bss start,
bss end, and bss size (defined on lines 35, 42, and 43 respectively). These are variables that record the actual addresses

of the beginning and end of the bss segment in memory. We can get their values in C like so:

1 char ∗ beg in bs s = & b s s s t a r t ;
2 char ∗ end bss = & b s s e n d ;

The ampersand character (&) means “address of.” The symbols bss start and bss end are not at fixed locations in
memory. For example, if we write a new function, the .text segment will expand, causing the bss start and bss end

to get pushed to higher memory addresses.

0x00000

.stack Segment Kernel Stack

0x80000

.text Segment Code

bss start

.bss Segment Uninitialized variables

bss end

.data Segment Initialized variables

2

2 Clearing the bss Segment

When our kernel starts running, it expects to have its uninitialized variables—stored in the bss segment—cleared with zeros.
We can think of the bss segment as a big array that starts out with a bunch of garbage values in it. Our job is to write zeros
to that array. The pointer begin bss that we declared above can be treated as an array. It is a special array that starts at
a particular address in memory—the beginning of your kernel’s bss segment. Since bss contains global variables, you need
to create some global variables so there is something in there to clear. Write zeros to it using the normal method (for loop
or whatever).

3 Building a Linked List in C

In our operating system, we are going to use linked lists to store lots of things (list of active processes, list of free memory
pages, etc.), and it will be convenient to have a couple functions that we can call to add or remove elements from a linked
list. I have defined a struct for a singly-linked list below and instantiated it several times to form a statically linked list. Your
job is to write one function that links a new element into an existing list (list add) and another function that removes an
element from a list (list remove).

1 struct l i s t e l e m e n t {
2 struct l i s t e l e m e n t ∗next ;
3 int data ;
4 } ;
5
6 struct l i s t e l e m e n t c = { NULL, 0} ; // next p t r i s NULL, end o f l i s t
7 struct l i s t e l e m e n t b = { &c , 0} ; // next p t r po in t s to c
8 struct l i s t e l e m e n t a = { &b , 0} ; // next p t r po in t s to a
9 struct l i s t e l e m e n t ∗head = &a ;

Function prototypes for the two functions:

list_add(struct list_element **list_head, struct list_element *new_element);

list_remove(struct list_element *element);

list add adds new element to a list pointed to by list head. It can add it anywhere in the list (beginning, end,
whatever).

list remove removes element from the list that it is currently in (we assume that it is currently linked in a list).

3

