CS 310

PROCESSES

LOYOLA

IIIIIIIIIIIIIIIII

ADMINISTRIVIA

 shittyshell In-class assignment this week.

« Shell homework out this week, due Sunday 9/10
11:59 PM.

« Microsoft Teams Join Code 34izlae

 Join link on course website
VM Download links?

TODAY WE ARE TALKING ABOUT PROCESSES

* Program: combination of instructions & data
* Process: a running program
 App:?

* OS Supports Programs & Processes, so what do
you want your program to do?

WHAT DO YOU WANT YOUR PROGRAM TO DO?
EXAMPLE: VIDEO GAME

/ét input from user s
2. Recompute location of objects|§
wraw to screen

WHAT DO YOU WANT YOUR PROGRAM TO DO?
EXAMPLE: WEB BROWSER cea e —

€he New Hork Times

Friday, August 18, 2023

LIVE Just Now

Biden Celebrates New Partnership
Between U.S., South Korea and
Japan

- President Biden is holding a news conference with
Prime Minister Fumio Kishida of Japan and
President Yoon Suk Yeol of South Korea.

« The summit is aimed at countering China’s
regional dominance and ending decades of friction
between the two Asian countries.

See more updates €

u Here is why it is crucial for Japan and South
I n r m r Korea to get along as part of Washington’s
u strategy in Asia and beyond.
Troop Deaths and Injuries in Ukraine War

Near 500,000, U.S. Officials Say
equest page from server
] of troops as Kyiv’s counteroffensive drags on. A

lack of rapid medical care has added to the toll.
5 MIN READ

Russia said a Ukrainian drone damaged a
] building in M ’s fi ial center.

See more headlines €@

STRATEGY: LET PROGRAMS DO WHATEVER
THEY WANT.

* Draw directly to screen

 Read & write directly to network card
* Read & write directly to disk

+ etc.

nnnnnnnnnn

Biden Celebrates New Partnership
Between U.S., South Korea and
Japan

- Preident Biden s holding a news conference with
Prime Minister Fumio Kishidaof Japan and
President Yoon Suk Yeol of South Korea

Seo moreupcates @

Here is why itis crucial for Japan and South
Korea to get along as part of Washington's
strategy in Asia and beyond.

nytimes.com

The New Jork Eimes

[Q search

Armando

A 4

Rock Stars AnnaLisa

Lauren Ulrick

Troop Deaths and Injuries in Ukraine War
Near 500,000, U.S. Officials Say
Ukraine and Russia have lost staggering number
of roops as Kyiv's counteroffensive drags on. A
lack of rapid medical care has added to the tol

Russia said a Ukrainian drone damaged a
building in Moscow’s financial center.
‘Soe more headiines @

— s e

Donetsk region A tank being checked and loaded with sells.

John Appleseed

© sevouatmopan

A 4

Eden

118 PM

Yesterday

Justin Shumaker
@ I'd love to hear more about your project.

Call me back when you have a chance!

Yesterday

To: Justin Shumaker

'd love to hear more about your
project. Call me back when you
have a chance!

WHAT IF TWO APPS WANT
TO USE THE SAME
RESOURCE?

Biden Celebrates New Partnership
Between U.S., South Korea and
Japan

President Biden i holding a news conference with
Prime Minister Fumio Kishida of Japan and
President Yoon Suk Yeol of South

The summit is aimed at countering China's
regional dominance and ending decades of friction
between the two Asian countries.

See more updates @

Here is why it is crucial for Japan and South
Korea to get along as part of Washington's
strategy in Asia and beyond.

nytimes.com M+ @

€he New JJork Times 2

Friday, August 18,2023

Troop Deaths and Injuries in Ukraine War
Near 500,000, U.S. Officials Say

Ukraine and Russia have lost a staggering number
oftroops as Kyiv's counteroffensive drags on. A

lack of rapid medical care has added to the toll.

Russia said a Ukrainian drone damaged a
building in Moscow’s financial center.
See more headiines @

Donetsk region A tank being chiecked and foaded with shells:

ofthe Forfess.

ABSTRACTIONS

* Files, not raw bytes on the disk
» Sockets, not packets on the network interface

+ Teletype/Terminal interface, not keyboard
scancodes

* etc.

View of a process

 Process: program that is being executed
« Contains code, data, and a thread

» Thread contains registers, instruction pointer, and stack

* Code and

Data
.

static data

code

» Registers

%brax

%eax

%Irbx

%ebx

%rCcX

%ecx

%

%edx

|

o

oX
5
wn

%esi

-

%edi

%esp

A | 2 11
S BLD
olv ||l

%eb

 Instruction Pointer
* Condition Codes

 Stack

~ FFFF FFFFpey

STACK REVIEW

SAME WORKS FOR A FUNCTION CALL TREE

Etart ()] main ()

|_R start

Stack

SAME WORKS FOR A FUNCTION CALL TREE

|_R start start
push {lr} .

Stack

SAME WORKS FOR A FUNCTION CALL TREE

P e ,

LR |main start

Stack

SAME WORKS FOR A FUNCTION CALL TREE

L '

LR |main start

Nh {1lr} main
—>

Stack

SAME WORKS FOR A FUNCTION CALL TREE

L mm— '
Etart()] Eain()] Euts () j

LR puts start

Stack

main

SAME WORKS FOR A FUNCTION CALL TREE

e e
Etart()] Eain()] Euts () j

LR puts start

main
push {1lr}

»/PuUts

Stack

SAME WORKS FOR A FUNCTION CALL TREE

L mm— '
Etart()] Eain()] Euts () j

LRK puts start

Stack

main

puts

SAME WORKS FOR A FUNCTION CALL TREE

e e
Etart ()] Eain ()] Euts () write ()
Stack
LR; puts start

main
pop {lr}
puts

SAME WORKS FOR A FUNCTION CALL TREE

P e '
Etart()] Eain()] write ()]

LR puts start

Stack

main
bx 1r

SAME WORKS FOR A FUNCTION CALL TREE

P e '
Etart()] Eain()] write ()]

LR |main start

main

Stack

SAME WORKS FOR A FUNCTION CALL TREE

(] [E]

LR puts start

Stack

bx 1r

SAME WORKS FOR A FUNCTION CALL TREE

(] [E]

|_R start start
-— pop {lr}

Stack

SAME WORKS FOR A FUNCTION CALL TREE

P 4
SIS
W™

|_R start

Stack

bx 1r

PROLOGUE AND EIPLOGUE

function:
push {lr} -« Prologue

. do some stuff..

pop {lr} < Epilogue
bx 1r

STACK FRAMES

CLOBBERED REGISTERS

main:
push {1lr}
l1dr r4,=10 ; Init local wvariable
1dr r0,=string ; strlen(string)
bl strlen ; Compute length of string
pop {1lr}
bx 1lr
strlen:
push {1lr}
l1dr r4,=0 ; Init iterator
..compute string length..
pop{lr}
bx 1lr

CLOBBERED REGISTERS

1dr r4,=10 ; Init local wvariable
main and strlen both
use r4 for local variables
strlen overwrites

l1dr r4,=0 ; Init iterator

main’s local variable!

PROLOGUE AND EIPLOGUE

function: Stack Frame

push {1lr,r4,r5}«—— Prologue 1r

rd

..do some stuff.. e

pop {lr,r4,r5} «—— Epilogue
bx 1lr

LOCAL VARIABLES
function () { Stack Frame
int 1, j; 1r
short k; e L
int 3;
} short k;

LOCAL VARIABLES
function () { Stack Frame
char array|[8]; Ly

(O] 011 §I2] | [3]
} char array[] —»

View of a process

 Process: program that is being executed
« Contains code, data, and a thread

» Thread contains registers, instruction pointer, and stack

* Code and

Data
.

static data

code

» Registers

%brax

%eax

%Irbx

%ebx

%rCcX

%ecx

%

%edx

|

o

oX
5
wn

%esi

-

%edi

%esp

A | 2 11
S BLD
olv ||l

%eb

 Instruction Pointer
* Condition Codes

 Stack

~ FFFF FFFFpey

PROCESS

Off Limits
MEMORY
ISOLATION
0x0080A000
Heap
0x00809000
Off Limits
0x00804000 Globals
0x00800000 - Accessible to Process

The three basic
process states:

Descheduled
<«—— | Ready
Scheduled
/O: initiatx / /O: done

Blocked

» OS schedules processes

 Decides which of many competing
processes to run.

* A blocked process is not ready to
run.

« /O means input/output —
anything other than computing.

» For example, reading/writing disk
sending network packet, waiting for
keystroke, updating display.

» While waiting for results, the
process often cannot do anything,
so it blocks, and the OS schedules
a different process to run.

Multiprogramming processes

* When one process is Blocked, OS

The three basic can schedule a different process

process states: that is Rea dy
Descheduled
<—— | Ready » Even with a single processor, the
Seheduled OS can provide the illusion of
many processes running
/O: initiate /I/O: done SImUItaneousw
Blocked * OS usually sets a maximum
runtime before switching limit for

processes (timeslice)

e e
Key difference between kernel and processes: privilege

* Processes have limited access to the computer
» Hardware supports different "modes” of execution (kernel and user)
« Kernel mode has access to physical memory and special instructions

* They run when the OS lets them
* They have access to the memory the OS gives them

* They cannot access many things directly
» Must ask the OS to do so for them

O O & neil — -zsh — 59x28

CREATING A NEW PROCESS: FORK @

for]i()/

exec ()

PROCESS TREE

= ..
PROCESS SYSCALLS

pid t fork(void);
 Create a new process that is a copy of the current one
 Returns either PID of child process (parent) or 0 (child)

void _exit(int status);
« Exit the current process (exit(), the library call cleans things up first)

pid_t waitpid(pid t pid, int *status, int options);
 Suspends the current process until a child (pid) terminates

int execve(const char *filename, char *const argv[], char *const envp[]);
« Execute a new program, replacing the existing one

= ..
CREATING A NEW PROCESS

#include <stdio.h>
#include <unistd.h>

int main () |
1f(fork() == 0) {
printf ("CHILD\n"”);
} else {

printf (Y"PARENT\n") ;

}
printf ("BOTH\n") ;
return 0;

J

= ..
CREATING A NEW PROCESS & WAITING FOR CHILD

#include <stdio.h>
#include <unistd.h>

int main()
int status;
1f(fork() == 0) {
printf (YCHILD\n”) ;
} else {
printf (YPARENT\n"”) ;
wait (&status) ; // Parent waits for child to finish
} // and gets its return code 1in status.
printf ("BOTH\n") ;
return 0O;

= ..
EXECUTING A NEW PROGRAM

#include <stdio.h>
#include <unistd.h>

int main(){
if(fork() == 0) {
execve("/bin/python3", ...);
} else {
printf("Parent!\n");

}

printf("Only parent!\n");
return 9;

FORK BOMB e Creates a new process
e Then each process creates
#include <stdio.h> a NEW process

e Then each of those creates
a New process...
e Known as a Fork bomb!
e Machine eventually runs
out of memory and

#include <sys/types.h>

int main () {

while (1) { processing power and will
fork () ; stop working

J e Defense: limit number of

return 0O; processes per user

FORK BOMB
e Bash fork bomb
O slr& by
* Python fork bomb With spacing and a clearer function
lmport oOs name
while 1: fork() {
os.tork() fork | fork &
e Rust fork bomb)
fork

#[allow (unconditional recursion)]
fn main() {
std: :thread: :spawn (main) ;
main () ;

ADMINISTRIVIA

 shittyshell In-class assignment today.
« Microsoft Teams Join Code 34izlae

 Join link on course website
* Homework 1 Due Next Wednesday

WHAT DOES THE SHELL DO

O 5 neil — -zsh — 59x28

1. Get a command (1s -a)

2. Parse the command

* First token is the name of
the binary to run. Need to
convert to a full path on
disk.

« 1s = /bin/ls

3. Build an argv for the new
process.

4. fork () /execve ()

PARSING THE COMMAND

Command Buffer:

1

S

\O

1. Is this a complete path to a binary on disk?

- If yes, we don’t need to do anything because
the user told us what binary they want to run.

- If no, we need to find the complete path to the
binary on the disk.

- You can tell if it’s a complete path by looking
at the first character: if it's a ‘/‘, then it’'s a

complete path.

2. If not a complete path, use the PATH variable to
find the binary.

« PATH =“/bin/” command = “1s”
- Concatenate PATH with command: “/bin/1ls”

BUILDING THE ARGUMENT VECTOR

Command Buffer (char array): 1' Argument VeCtor is an array
T T2 T of pointers, not array of
chars.

Full Path to Binary (char array):

2. Each element of the
argument vector array
holds the address of a char.

C T in C means “address of”

/ b 1 n / 1 s | \O

Argument Vector (char™* array):

&fullpath[0] &cmdbuf [3] NULL

= ..
TODO: ADD A PARAMETER TO ARGV

#include <stdio.h>
#include <unistd.h>

vold main () {
char cmd[] = "/bin/1ls";
char *argv|[] = {&cmd[0], NULL};

execv (cmd, argv) ;

SIGNALS

= ..
ALERTING PROCESSES OF EVENTS

e How do we let a process know there was an

event?

e Errors

e Termination

e User commands (like CTRL-C or CTRL-\)

e Events could happen whenever

e Need to interrupt process control flow and run an event
handler

e Linux mechanism to do so is called “signals”

= ..
SIGNALS ARE ASYNC MESSAGES TO PROCESSES

e Sometimes the OS wants to send something like an interrupt to a
process
e Your child process completed
e You tried to use an illegal instruction
e You accessed invalid memory
e You are terminating now

e In POSIX systems, this idea is called “Signals”

1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL 5) SIGTRAP

6) SIGABRT 7) SIGBUS 8) SIGFPE 9) SIGKILL 10) SIGUSRI1
11) SIGSEGV 12) SIGUSR2 13) SIGPIPE 4) SIGALRM 15) SIGTERM
16) SIGSTKFLT 17) SIGCHLD 18) SIGCONT 9) SIGSTOP 20) SIGTSTP
21) SIGTTIN 22) SIGTTOU 23) SIGURG 4) SIGXCPU 25) SIGXFSZ
26) SIGVTALRM 27) SIGPROF 28) SIGWINCH 29) SIGIO 30) SIGPWR
31) SIGSYS ..

SIGNALS ARE ASYNC MESSAGES TO PROCESSES

e Sometimes the OS wants to send something like an interrupt to a
process

Your child process completed

You tried to use an illegal instruction

You accessed invalid memory

You are terminating now

e In POSIX systems, this idea is called “Signals”

1)

11)

21)
26)
31)

SIGHUP

SIGSEGV
SIGSTKELT 17
SIGTTIN
SIGVTALRM 27
SIGSYS

\
ABR SIGBUS

)
)
2)
)

SIGUSR2 13
SIGCHLD 18
SIGTTOU 23
SIGPROF 28

O
8) SIGFPE

)
)
)
)

SIGPIPE
SIGCONT
SIGURG
SIGWINCH 29

4)

4)
9)
4)
)

SIGILL
SIGKILL
SIGALRM
SIGSTOP
SIGXCPU
SIGIO

)
10)
15)
20)
25)
30)

Process Errors

SIGTRAP
STIGUSR1
SIGTERM
SIGTSTP
SIGXESZ
SIGPWR

6)

1

SIGQUIT
SIGABRT
SIGSEGV
SIGSTKFLT 17
SIGTTIN
SIGVTALRM 27
SIGSYS

SIGPIPE
SIGCONT
SIGURG
SIGWINCH 29) SIGIO

]
0 S S N N N SN

SIGNALS ARE ASYNC MESSAGES TO PROCESSES

e Sometimes the OS wants to send something like an interrupt to a
process

Your child process completed

You tried to use an illegal instruction
You accessed invalid memory

You are terminating now

o In POSIX systems, this idea is called "Signals” Process Termination

SIGINT
SIGBUS
SIGUSR2 13
SIGCHLD 18
SIGTTOU 23
SIGPROF 28

/ . 5)
10)
14 SIGALRM 15)
19) SIGSTOP 20)
24) SIGXCPU 25)
0)

SIGTRAP
STIGUSR1
SIGTERM
SIGTSTP
SIGXESZ
SIGPWR

SENDING SIGNALS

e OS sends signals when it needs to

e Processes can ask the OS send signals with a system call
e int kill (pid t pid, 1int siqg);

e Users send signals through OS from command line or keyboard
e Shell command: ki1l -9 pid (SIGKILL)
e CTRL-C (SIGINT)

HANDLING SIGNALS

e Programs can register a function to handle individual signals
* signal (int sig, sighandler t handler);

e OS keeps track of signal handlers for each signal
e Calls that function when a signal occurs

e What is the process supposed to do about it?
e Do some quick processing to handle it
e Reset the process and try again
e Quit the process (default handler)

#include <stdbool.h>
#include <stdlib.h>
#include <stdio.h>

#include <unistd.h>
#include <signal.h>

void sighandler (int signum) {
printf ("HA HA You can't kill me!\n");
}
volid main (void) {
signal (SIGINT, sighandler);
printf ("Starting\n");
while (1) {
printf ("Going to sleep for a second...\n");
sleep(l);

THREADS

Alternate view of a process

* A process could have multiple threads
» Each with its own registers and stack

* Code and
Data

static data

[« Registers

 Instruction Pointer‘

[%rax [heax [[%r8 [%red | . ik

[(%rbx [%ebx |1%r9 [%rod | Cond|t|0n COdeS

[%rcx [%ecx | [%r10 [%ried]

[%rdx %edx |[%ril %r1ld |

Bersi_ Twesi J[%ri2z Twiza] e« Stack

[%rdi [edi | [%er13 Prizd] ——

[Crsp [%esp | [%rid Griad | %’c—

(%rbp [%ebp | |1%r15 [%ri5d |
\ y

i .] N

[+ Registers - Instruction Pointer

[%rax %heax |[%r8 [%r8d | iti

[(%rbx [%ebx | 1%r9 [%r9d | Condition Codes

[(%rcx [hecx |1%r10 [%ried |

[%rdx [%edx | Déril %rild |

(%rsi [%esi |[%r12 %ri2d | Stack

Pordi [eedi |[%ri3 [erisd | wrert e85,

[%rsp [%esp |Bir14__ [ariad] —Stfc—

(%rbp [%ebp | 1%r15 [%r15d |

Threads have separate:
* Instruction Pointer
* Registers
« Stack Memory
 Condition Codes

Threads share:
* Code
* Global variables

61

= ..
PROCESS

Off Limits
WITH 0x0080C000
Stack (T2)
MULTIPLE o
THREADS o
0x00809000
Off Limits
0x00804000 Globals
0x00800000 - Accessible to Process

Thread use case: web browser

Let’s say you're implementing a web browser:

You want a tab for each web page you open:
 The same code loads each website (shared code section)

* The same global settings are shared by each tab (shared data section)

* Each tab does have separate state (separate stack and registers)

Disclaimer: Actually, modern browsers use separate processes for each tab for a variety of
reasons including performance and security. But they used to use threads.

63

Thread use case: user interfaces

* Even if there is only a single processor core, threads are useful

* Single-threaded User Interface
* While processing actions, the UI is frozen

main() {
while(true) {
check for UI interactions();

process_UI_actions(); // UI freezes while
processing

}
}

64

Thread use case: web server

* Example: Web server
* Receives multiple simultaneous requests
* Reads web pages from disk to satisfy each request

65

Web server option 1: handle one request at a time

Request 1 arrives

Server reads in request 1

Server starts disk I/O for request 1
Request 2 arrives

Disk I/O for request 1 finishes
Server responds to request 1
Server reads in request 2

time

* Easy to program, but slow
* Can't overlap disk requests with computation
* Can’t overlap either with network sends and receives

66

Web server option 1: event-driven model

* Issue I/Os, but don't wait for them to complete
Request 1 arrives
Server reads in request 1
Server starts disk I/O for request 1
Request 2 arrives
Server reads in request 2
Server starts disk I/O for request 2
Disk I/O for request 1 completes v
Server responds to request 1

time

* Fast, but hard to program
* Must remember which requests are in flight and which I/O goes where
* Lots of extra state

67

Web server option 3: multi-threaded web server

* One thread per request. Thread handles only that request.

Main Thread
Request 1 arrives
Create thread

Request 2 arrives
Create thread

Thread 1

Read in request 1
Start disk I/O

Disk I/O finishes

Respond to request 1

Exit

Thread 2

Read in request 2
Start disk I/O

* Easy to program (maybe), and fast!
* State is stored in the stacks of each thread and the thread scheduler
» Simple to program if they are independent...

time

68

More Practical Motivation

’
Back to Jeff Dean’s
w L1 cache reference 0.5 ns
Numbers Branch mispredict 5 ns
Everyone ShO“Id L2 cache reference 7 ns
/4 Mutex lock/unlock 25 ns
Know .
Main memory reference 100 ns
Compress 1K bytes with Zippy 3,000 ns
Send 2K bytes over 1 Gbps network 20,000 ns
. Read 1 MB sequentially from memor 250,000 ns
Handle I/O in > seduer Y Y
Round trip within same datacenter 500,000 ns
separate thread, [Disk seex 10,000, 000

avoid blocking Read 1 MB sequentially from disk 20,000,000
Send packet CA->Netherlands->CA 150,000,000
other progress

4/5/2022 Kumar CS 162 at UC Berkeley, Summer 2020

Models for thread libraries: Kernel Threads

* Thread scheduling is implemented by the operating system
* OS manages the threads within each process

* Upsides
* Other threads can continue while Processes
one blocks on I/O

* No additional scheduler

* Downsides

» Higher overhead 05
Kernel Scheduler

* This is what we'll focus on in CS343

Threads versus Processes

Threads

* pthread create()
* Creates a thread

* Shares all memory with all
threads of the process.

* Scheduled independently of
parent
* pthread join()

» Waits for a particular thread to
finish

* Can communicate by reading/

writing (shared) global
variables.

Processes

* fork()
* Creates a single-threaded process
» Copies all memory from parent
* Can be quick using copy-on-write
* Scheduled independently of parent
* waitpid()
* Waits for a particular child process to
finish
* Can communicate by settin
shared memory, pipes, reacclJ ing/

writing files, or using sockets
(network).

POSIX Threads Library: pthreads

* https://man7.org/linux/man-pages/man?/pthreads.7.html

int pthread create(pthread t *thread, const pthread attr t *attr,
void *(*start routine) (void*), void *arg);

* thread is created executing start_routine with arg as its sole argument.
* return is implicit call to pthread_exit

void pthread exit(void *value ptr);
 terminates the thread and makes value_ptr available to any successful join

int pthread join(pthread t thread, void **value ptr);
* suspends execution of the calling thread until the target thread terminates.

* On return with a non-NULL value_ptr the value passed to pthread exit() by the
terminating thread is made available in the location referenced by value_ptr.

72

https://man7.org/linux/man-pages/man7/pthreads.7.html
https://pubs.opengroup.org/onlinepubs/7908799/xsh/pthread_exit.html
https://pubs.opengroup.org/onlinepubs/7908799/xsh/pthread_exit.html

Threads Example

_linctude <stdio.h>

#include <stdlib.h>
#include <pthread.h>
#include <string.h>

int common = 162;

void *threadfun(void *threadid)

{
long tid = (long)threadid;
printf("Thread #%1x stack: %lx common: %lx (%d)\n", tid,
(unsigned long) &tid, (unsigned long) &common, common++);
pthread_exit(NULL);
}

int main (int argc, char =*argv([])
{
long t;
int nthreads = 2;
if (arge > 1) {
nthreads = atoi(argv([1]);
}
pthread_t *threads = malloc(nthreads*sizeof(pthread_t));
printf("Main stack: %lx, common: %lx (%d)\n",
(unsigned long) &t,(unsigned long) &common, common);
for(t=0; t<nthreads; t++){
int rc = pthread_create(&threads([t], NULL, threadfun, (void *)t);
if (re){
printf("ERROR; return code from pthread_create() is %d\n", rc);
exit(-1);
}
}

for(t=0; t<nthreads; t++){
pthread_join(threads[t], NULL);
}

pthread_exit(NULL); /* last thing in the main thread =*/

73

Threads Example

* Reads N from process
arguments

Creates N threads

Each one prints a
number, then
increments it, then exits

* Main process waits for
all of the threads to
finish

|
#in
#1in
#in

int

clude <stdio.h>

clude <stdlib.h>
clude <pthread.h>
clude <string.h>

common = 162;

void *threadfun(void *threadid)

{

long tid = (long)threadid;
printf("Thread #%1x stack: %lx common: %lx (%d)\n", tid,

(unsigned long) &tid, (unsigned long) &common, common++);

pthread_exit(NULL);

}

int

{

main (int argc, char =*xargv[])

int nthreads

if (argec > 1) {

nthreads = atoi(argv([1]);

pthread_t *threads = malloc(nthreads*sizeof(pthread_t));

printf("Main stack: %lx, common: %lx (%d)\n",

for(t=0; t<nthreads; t++){

SCommon ommon/t:
int rc = pthread create(&threads[t] threadfun, (void *)t);

printf("ERROR; return code from pthread_create() is %d\n", rc);
exit(-1);

for(t=0; t<nthreads; t++){

pthread_join(threads[t], NULL);

pthread_exit(NULL); /* last thing in the main thread =*/

74

Threads Example

'(base) CullerMacl9:code@4 culler$./pthread 4

Main stack: 7ffee2c6b6b8, common: 10cf95048 (162)
Thread #1 stack: 70000d83bef8 common: 10cf95048 (162)
Thread #3 stack: 70000d941ef8 common: 10cf95048 (164)
Thread #2 stack: 70000d8beef8 common: 10cf95048 (165)
Thread #0 stack: 70000d7b8ef8 commgn: 10cf95048 (163)

_lincLude <stdio.h>

#include <stdlib.h>
#include <pthread.h>
#include <string.h>

int common = 162;

void *threadfun(void *threadid)

{
long tid = (long)threadid;
printf("Thread #%1lx stack: %lx common: %lx (%d)\n", tid,
(unsigned long) &tid, (unsigned long) &common, common++);
pthread_exit(NULL);
}

int main (int argc, char *argv[])
{
long t;
int nthreads = 2;
if (argec > 1) {
nthreads = atoi(argv([1]);
}
pthread_t *threads = malloc(nthreads*sizeof(pthread_t));
printf("Main stack: %lx, common: %lx (%d)\n",
(unsigned long) &t,(unsigned long) &common, common);
for(t=0; t<nthreads; t++){
int rc = pthread_create(&threads([t], NULL, threadfun, (void *)t);
if (re){
printf("ERROR;
exit(-1);
}
}

return code from pthread_create() is %d\n", rc);

for(t=0; t<nthreads; t++){
pthread_join(threads[t], NULL);
}

pthread_exit(NULL); /* last thing in the main thread =*/

75

Check your understanding

(base) CullerMacl9:code®4 culler$./pthread 4

Main stack: 7ffee2c6b6b8, common:
Thread #1 stack:
Thread #3 stack:
Thread #2 stack:
Thread #0 stack:

70000d83bef8
70000d9%41ef8
70000d8beef8
70000d7bBef8

common:
common:
common:
common:
=

10cf95048 (162)

10cf95048 (162)
10cf95048 (164)
10cf95048 (165)
10cf95048 (163)

1.

2.

How many threads are in this
program?

Does the main thread join with
the threads in the same order
that they were created?

Do the threads exit in the same
order they were created?

If we run the program again,
would the result change-

_ichLLce <stdio.h>

#include <stdlib.h>
#include <pthread.h>
#include <string.h>
int common = 162;
void *threadfun{void *threadid)
{
long tid = (long)threadid;

printf("Thread #%1lx stack: %lx common: %lx (%d)\n", tid,
(unsigned long) &tid, (unsigned long) &common, common++);
pthread_exit(NULL);

}
int main (int argc, char =*argv[])
{
long t;
int nthreads = 2;
if (argec > 1) {
nthreads = atoi(argv([1]);
}
pthread_t *threads = malloc(nthreads*sizeof(pthread_t));

printf("Main stack: %lx, common: %lx (%d)\n",
(unsigned long) &t,(unsigned long) &common, common);
for(t=0; t<nthreads; t++){

int rc = pthread_create(&threads([t], NULL, threadfun, (void *)t);
if (re){
printf("ERROR; return code from pthread_create() is %d\n", rc);
exit(-1);
}
}

for(t=0; t<nthreads; t++){
pthread_join(threads[t], NULL);
}

pthread_exit(NULL); /* last thing in the main thread */

}

76

Check your understanding

(base) CullerMacl9:code®4 culler$./pthread 4

Main stack: 7ffee2c6b6b8, common: 10cf95048 (162)
Thread #1 stack: 70000d83bef8 common: 10cf95048 (162)
Thread #3 stack: 70000d941ef8 common: 10cf95048 (164)
Thread #2 stack: 70000d8beef8 common: 10cf95048 (165)
Thread #0 stack: 70000d7b8ef8 commgn: 10cf95048 (163)

1. How many threads are in this

program? Five

Does the main thread join with
the threads in the same order
that they were created? Yes

Do the threads exit in the same
order the_;/ were created?
Maybe?*

If we run the program again,
would the result change:
Possibly!

2.

}

{

}

include

in

<stdio.h>

#include <stdlib.h>

#include <pthread.h>

#include <string.h>

int common = 162;

void *threadfun(void *threadid)
{

long tid = (long)threadid;

printf("Thread #%1lx stack: %lx common: %lx (%d)\n", tid,
(unsigned long) &tid, (unsigned long) &common, common++);

pthread_exit(NULL);

t main (int argc, char *argv([])
long t;
int nthreads = 2;
if (argc > 1) {
nthreads = atoi(argv([1]);
}
pthread_t *threads = malloc(nthreads*sizeof(pthread_t));

printf("Main stack: %lx, common: %lx (%d)\n",
(unsigned long) &t,(unsigned long) &common, common);
for(t=0; t<nthreads; t++){

int rc = pthread_create(&threads([t], NULL, threadfun, (void *)t);
it (re){
printf("ERROR; return code from pthread_create() is %d\n", rc);
exit(-1);
}
}
for(t=0; t<nthreads; t++){
pthread_join(threads[t], NULL);
}

pthread_exit(NULL); /* last thing in the main thread */

77

