
CS 310

PROCESSES

• shittyshell In-class assignment this week.
• Shell homework out this week, due Sunday 9/10

11:59 PM.
• Microsoft Teams Join Code 34iz1ae

• Join link on course website
• VM Download links?

ADMINISTRIVIA

• Program: combination of instructions & data
• Process: a running program
• App: ?

• OS Supports Programs & Processes, so what do
you want your program to do?

TODAY WE ARE TALKING ABOUT PROCESSES

WHAT DO YOU WANT YOUR PROGRAM TO DO?
EXAMPLE: VIDEO GAME

1. Get input from user 🕹
2. Recompute location of objects👻
3. Draw to screen

WHAT DO YOU WANT YOUR PROGRAM TO DO?
EXAMPLE: WEB BROWSER

1. Get input from user 🖱
2. Request page from server
3. Draw to screen

• Draw directly to screen
• Read & write directly to network card
• Read & write directly to disk
• etc.

STRATEGY: LET PROGRAMS DO WHATEVER
THEY WANT.

0, 0, 0, 0,…

WHAT IF TWO APPS WANT
TO USE THE SAME
RESOURCE?

OS

• Files, not raw bytes on the disk
• Sockets, not packets on the network interface
• Teletype/Terminal interface, not keyboard

scancodes
• etc.

ABSTRACTIONS

View of a process

• Process: program that is being executed
• Contains code, data, and a thread
• Thread contains registers, instruction pointer, and stack

7

• Registers
%r8d%r8
%r9d%r9
%r10d%r10
%r11d%r11
%r12d%r12
%r13d%r13
%r14d%r14
%r15d%r15

%rsp %esp

%eax%rax
%ebx%rbx
%ecx%rcx
%edx%rdx
%esi%rsi
%edi%rdi

%ebp%rbp

• Instruction Pointer
• Condition Codes

• Stack

• Code and
Data

STACK REVIEW

SAME WORKS FOR A FUNCTION CALL TREE

start() main()

startLR

Stack

SAME WORKS FOR A FUNCTION CALL TREE

start() main()

startLR start
push {lr}

Stack

SAME WORKS FOR A FUNCTION CALL TREE

start() main() puts()

mainLR start

Stack

SAME WORKS FOR A FUNCTION CALL TREE

start() main() puts()

mainLR start

push {lr}

Stack

main

SAME WORKS FOR A FUNCTION CALL TREE

start() main() puts() write()

putsLR start

Stack

main

SAME WORKS FOR A FUNCTION CALL TREE

start() main() puts() write()

putsLR start

push {lr}

Stack

main

puts

SAME WORKS FOR A FUNCTION CALL TREE

start() main() puts() write()

putsLR start

Stack

main

puts

SAME WORKS FOR A FUNCTION CALL TREE

start() main() puts() write()

putsLR start

Stack

main

puts

pop {lr}

SAME WORKS FOR A FUNCTION CALL TREE

start() main() puts() write()

putsLR start

Stack

main
bx lr

SAME WORKS FOR A FUNCTION CALL TREE

start() main() puts() write()

mainLR start

Stack

main
pop {lr}

SAME WORKS FOR A FUNCTION CALL TREE

start() main() puts() write()

putsLR start

Stack

bx lr

SAME WORKS FOR A FUNCTION CALL TREE

start() main() puts() write()

startLR start

Stack

pop {lr}

SAME WORKS FOR A FUNCTION CALL TREE

start() main() puts() write()

startLR

Stack

bx lr

function:

 push {lr}

 …do some stuff…

 pop {lr}

 bx lr

PROLOGUE AND EIPLOGUE

Prologue

Epilogue

STACK FRAMES

main:

 push {lr}

 ldr r4,=10 ; Init local variable

 ldr r0,=string ; strlen(string)

 bl strlen ; Compute length of string

 pop {lr}

 bx lr

strlen:

 push {lr}

 ldr r4,=0 ; Init iterator

 …compute string length…

 pop{lr}

 bx lr

CLOBBERED REGISTERS

main:

 push {lr}

 ldr r4,=10 ; Init local variable

 ldr r0,=string ; strlen(string)

 bl strlen ; Compute length of string

 pop {lr}

 bx lr

strlen:

 push {lr}

 ldr r4,=0 ; Init iterator

 …compute string length…

 pop{lr}

 bx lr

CLOBBERED REGISTERS

main and strlen both
use r4 for local variables

strlen overwrites
main’s local variable!

function:

 push {lr,r4,r5}

 …do some stuff…

 pop {lr,r4,r5}

 bx lr

PROLOGUE AND EIPLOGUE

Prologue

Epilogue

lr

r4

r5

Stack Frame

function() {

 int i, j;

 short k;

 …

}

LOCAL VARIABLES

lr

int i;

int j;

Stack Frame

short k;

function() {

 char array[8];

 …

}

LOCAL VARIABLES

lr

[0]

Stack Frame

[1] [2] [3]

[4] [5] [6] [7]
char array[]

View of a process

• Process: program that is being executed
• Contains code, data, and a thread
• Thread contains registers, instruction pointer, and stack

7

• Registers
%r8d%r8
%r9d%r9
%r10d%r10
%r11d%r11
%r12d%r12
%r13d%r13
%r14d%r14
%r15d%r15

%rsp %esp

%eax%rax
%ebx%rbx
%ecx%rcx
%edx%rdx
%esi%rsi
%edi%rdi

%ebp%rbp

• Instruction Pointer
• Condition Codes

• Stack

• Code and
Data

Globals

Heap

Code

Stack

0x00800000

0x00804000

0x00809000

0x0080A000

Addresses

Accessible to Process

Off Limits

Off Limits
PROCESS
MEMORY
ISOLATION

CREATING A NEW PROCESS: FORK
zsh

user@system ~ $ ls

zsh

fork()

exec()

ls

init

login

bash

ls

apache

apache

dhcpcd dbusd

PROCESS TREE

PROCESS SYSCALLS

CREATING A NEW PROCESS
#include <stdio.h>

#include <unistd.h>

int main() {

 if(fork() == 0) {

 printf(“CHILD\n”);

 } else {

 printf(“PARENT\n”);

 }

 printf(“BOTH\n”);

 return 0;

}

CREATING A NEW PROCESS & WAITING FOR CHILD
#include <stdio.h>

#include <unistd.h>

int main() {

 int status;

 if(fork() == 0) {

 printf(“CHILD\n”);

 } else {

 printf(“PARENT\n”);

 wait(&status); // Parent waits for child to finish

 } // and gets its return code in status.

 printf(“BOTH\n”);

 return 0;

}

EXECUTING A NEW PROGRAM

FORK BOMB

#include <stdio.h>
#include <sys/types.h>

int main() {
 while(1){
 fork();
 }
 return 0;
}

• Creates a new process
• Then each process creates

a new process
• Then each of those creates

a new process…
• Known as a Fork bomb!

• Machine eventually runs
out of memory and
processing power and will
stop working

• Defense: limit number of
processes per user

• Bash fork bomb
:(){ :|:& };:

• With spacing and a clearer function
name

fork() {
 fork | fork &
}
fork

FORK BOMB

• Python fork bomb

import os
while 1:
 os.fork()

• Rust fork bomb

#[allow(unconditional_recursion)]
fn main() {
 std::thread::spawn(main);
 main();
}

SHELL

• shittyshell In-class assignment today.
• Microsoft Teams Join Code 34iz1ae

• Join link on course website
• Homework 1 Due Next Wednesday

ADMINISTRIVIA

WHAT DOES THE SHELL DO
user@system ~ $ ls -a 1. Get a command (ls -a)

2. Parse the command
• First token is the name of

the binary to run. Need to
convert to a full path on
disk.

• ls → /bin/ls
3. Build an argv for the new

process.
4. fork() / execve()

PARSING THE COMMAND
1. Is this a complete path to a binary on disk?

• If yes, we don’t need to do anything because
the user told us what binary they want to run.

• If no, we need to find the complete path to the
binary on the disk.

• You can tell if it’s a complete path by looking
at the first character: if it’s a ‘/‘, then it’s a
complete path.

2. If not a complete path, use the PATH variable to
find the binary.
• PATH = “/bin/” command = “ls”
• Concatenate PATH with command: “/bin/ls”

l s - a \0

Command Buffer:

BUILDING THE ARGUMENT VECTOR
1. Argument vector is an array

of pointers, not array of
chars.

2. Each element of the
argument vector array
holds the address of a char.
• & in C means “address of”

l s - a \0

Command Buffer (char array):

/ b i n / l

Full Path to Binary (char array):

s \0

Argument Vector (char* array):

&fullpath[0] &cmdbuf[3] NULL

TODO: ADD A PARAMETER TO ARGV

#include <stdio.h>

#include <unistd.h>

void main() {

 char cmd[] = "/bin/ls";

 char *argv[] = {&cmd[0], NULL};

 execv(cmd,argv);

}

SIGNALS

ALERTING PROCESSES OF EVENTS
• How do we let a process know there was an

event?
• Errors
• Termination
• User commands (like CTRL-C or CTRL-\)

• Events could happen whenever
• Need to interrupt process control flow and run an event

handler
• Linux mechanism to do so is called “signals”

•

SIGNALS ARE ASYNC MESSAGES TO PROCESSES
• Sometimes the OS wants to send something like an interrupt to a

process
• Your child process completed
• You tried to use an illegal instruction
• You accessed invalid memory
• You are terminating now

• In POSIX systems, this idea is called “Signals”
 1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL 5) SIGTRAP

 6) SIGABRT 7) SIGBUS 8) SIGFPE 9) SIGKILL 10) SIGUSR1

11) SIGSEGV 12) SIGUSR2 13) SIGPIPE 14) SIGALRM 15) SIGTERM

16) SIGSTKFLT 17) SIGCHLD 18) SIGCONT 19) SIGSTOP 20) SIGTSTP

21) SIGTTIN 22) SIGTTOU 23) SIGURG 24) SIGXCPU 25) SIGXFSZ

26) SIGVTALRM 27) SIGPROF 28) SIGWINCH 29) SIGIO 30) SIGPWR

31) SIGSYS ...

SIGNALS ARE ASYNC MESSAGES TO PROCESSES
• Sometimes the OS wants to send something like an interrupt to a

process
• Your child process completed
• You tried to use an illegal instruction
• You accessed invalid memory
• You are terminating now

• In POSIX systems, this idea is called “Signals”
 1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL 5) SIGTRAP

 6) SIGABRT 7) SIGBUS 8) SIGFPE 9) SIGKILL 10) SIGUSR1

11) SIGSEGV 12) SIGUSR2 13) SIGPIPE 14) SIGALRM 15) SIGTERM

16) SIGSTKFLT 17) SIGCHLD 18) SIGCONT 19) SIGSTOP 20) SIGTSTP

21) SIGTTIN 22) SIGTTOU 23) SIGURG 24) SIGXCPU 25) SIGXFSZ

26) SIGVTALRM 27) SIGPROF 28) SIGWINCH 29) SIGIO 30) SIGPWR

31) SIGSYS ...

Process Errors

SIGNALS ARE ASYNC MESSAGES TO PROCESSES
• Sometimes the OS wants to send something like an interrupt to a

process
• Your child process completed
• You tried to use an illegal instruction
• You accessed invalid memory
• You are terminating now

• In POSIX systems, this idea is called “Signals”
 1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL 5) SIGTRAP

 6) SIGABRT 7) SIGBUS 8) SIGFPE 9) SIGKILL 10) SIGUSR1

11) SIGSEGV 12) SIGUSR2 13) SIGPIPE 14) SIGALRM 15) SIGTERM

16) SIGSTKFLT 17) SIGCHLD 18) SIGCONT 19) SIGSTOP 20) SIGTSTP

21) SIGTTIN 22) SIGTTOU 23) SIGURG 24) SIGXCPU 25) SIGXFSZ

26) SIGVTALRM 27) SIGPROF 28) SIGWINCH 29) SIGIO 30) SIGPWR

31) SIGSYS ...

Process Termination

• OS sends signals when it needs to

• Processes can ask the OS send signals with a system call
• int kill(pid_t pid, int sig);

• Users send signals through OS from command line or keyboard
• Shell command: kill -9 pid (SIGKILL)
• CTRL-C (SIGINT)

•

SENDING SIGNALS

• Programs can register a function to handle individual signals
• signal(int sig, sighandler_t handler);

• OS keeps track of signal handlers for each signal
• Calls that function when a signal occurs

• What is the process supposed to do about it?
• Do some quick processing to handle it
• Reset the process and try again
• Quit the process (default handler)

HANDLING SIGNALS

#include <stdbool.h>

#include <stdlib.h>

#include <stdio.h>

#include <unistd.h>

#include <signal.h>

void sighandler (int signum) {

 printf("HA HA You can't kill me!\n");

}

void main (void) {

 signal(SIGINT, sighandler);

 printf("Starting\n");

 while(1) {

 printf("Going to sleep for a second...\n");

 sleep(1);

 }

}

THREADS

Alternate view of a process

• A process could have multiple threads

• Each with its own registers and stack

61

• Code and
Data

Threads have separate:

• Instruction Pointer

• Registers

• Stack Memory

• Condition Codes

Threads share:

• Code

• Global variables

Globals

Heap

Code

Stack (T1)

0x00800000

0x00804000

0x00809000

0x0080C000

Addresses

Accessible to Process

Off Limits

Off Limits
PROCESS
WITH
MULTIPLE
THREADS

Stack (T2)

Thread use case: web browser

Let’s say you’re implementing a web browser:

You want a tab for each web page you open:

• The same code loads each website (shared code section) 

• The same global settings are shared by each tab (shared data section) 

• Each tab does have separate state (separate stack and registers)

Disclaimer: Actually, modern browsers use separate processes for each tab for a variety of
reasons including performance and security. But they used to use threads.

63

Thread use case: user interfaces

• Even if there is only a single processor core, threads are useful

• Single-threaded User Interface

• While processing actions, the UI is frozen

main() {
while(true) {

check_for_UI_interactions();
process_UI_actions(); // UI freezes while

processing
}

}

64

Thread use case: web server

65

• Example: Web server

• Receives multiple simultaneous requests

• Reads web pages from disk to satisfy each request

Web server option 1: handle one request at a time

Request 1 arrives

Server reads in request 1

Server starts disk I/O for request 1

Request 2 arrives

Disk I/O for request 1 finishes

Server responds to request 1

Server reads in request 2

• Easy to program, but slow

• Can’t overlap disk requests with computation

• Can’t overlap either with network sends and receives

66

time

Web server option 1: event-driven model

• Issue I/Os, but don’t wait for them to complete

Request 1 arrives

Server reads in request 1

Server starts disk I/O for request 1

Request 2 arrives

Server reads in request 2

Server starts disk I/O for request 2

Disk I/O for request 1 completes

Server responds to request 1

• Fast, but hard to program

• Must remember which requests are in flight and which I/O goes where

• Lots of extra state

67

time

Web server option 3: multi-threaded web server

• One thread per request. Thread handles only that request.

• Easy to program (maybe), and fast!

• State is stored in the stacks of each thread and the thread scheduler

• Simple to program if they are independent…

68

Main Thread

Request 1 arrives

Create thread

Request 2 arrives

Create thread

Thread 1

Read in request 1

Start disk I/O

Disk I/O finishes

Respond to request 1

Exit

Thread 2

Read in request 2

Start disk I/O

time

Kumar CS 162 at UC Berkeley, Summer 2020

More Practical Motivation

4/5/2022 69

Back to Jeff Dean’s
“Numbers
Everyone Should
Know”

Handle I/O in
separate thread,
avoid blocking
other progress

Models for thread libraries: Kernel Threads

• Thread scheduling is implemented by the operating system

• OS manages the threads within each process

• Upsides

• Other threads can continue while 

one blocks on I/O

• No additional scheduler

• Downsides

• Higher overhead

• This is what we’ll focus on in CS343

70

Scheduler
OS
Kernel

Processes

Threads versus Processes

Threads
• pthread_create()
• Creates a thread

• Shares all memory with all

threads of the process.

• Scheduled independently of

parent

• pthread_join()
• Waits for a particular thread to

finish

• Can communicate by reading/

writing (shared) global
variables.

Processes

• fork()

• Creates a single-threaded process

• Copies all memory from parent

• Can be quick using copy-on-write

• Scheduled independently of parent

• waitpid()
• Waits for a particular child process to

finish

• Can communicate by setting up

shared memory, pipes, reading/
writing files, or using sockets
(network).

POSIX Threads Library: pthreads

• https://man7.org/linux/man-pages/man7/pthreads.7.html

int pthread_create(pthread_t *thread, const pthread_attr_t *attr,  
void *(*start_routine)(void*), void *arg);

• thread is created executing start_routine with arg as its sole argument.

• return is implicit call to pthread_exit 

void pthread_exit(void *value_ptr);
• terminates the thread and makes value_ptr available to any successful join 

int pthread_join(pthread_t thread, void **value_ptr);
• suspends execution of the calling thread until the target thread terminates.

• On return with a non-NULL value_ptr the value passed to pthread_exit() by the

terminating thread is made available in the location referenced by value_ptr.

72

https://man7.org/linux/man-pages/man7/pthreads.7.html
https://pubs.opengroup.org/onlinepubs/7908799/xsh/pthread_exit.html
https://pubs.opengroup.org/onlinepubs/7908799/xsh/pthread_exit.html

Threads Example

73

Threads Example

• Reads N from process
arguments

• Creates N threads

• Each one prints a

number, then
increments it, then exits

• Main process waits for

all of the threads to
finish

74

Threads Example

75

Check your understanding

1. How many threads are in this
program?

2. Does the main thread join with
the threads in the same order
that they were created?

3. Do the threads exit in the same
order they were created?

4. If we run the program again,
would the result change?

76

Check your understanding

1. How many threads are in this
program? Five

2. Does the main thread join with
the threads in the same order
that they were created? Yes

3. Do the threads exit in the same
order they were created?
Maybe??

4. If we run the program again,
would the result change? 
Possibly!

77

