NEIL KLINGENSMITH

CS 310 OPERATING SYSTEMS

https://neilklingensmith.com/teaching/loyola/cs310-£2023/

150)(0) .\

IIIIIIIIIIIIIIIII

J 1870/
= [{f ’}rJO
*?@M Q,\

WHY DO YOU HAVE TO TAKE THIS STUPID CLASS

* People don't just write programs in one language for
one platform anymore. Real projects have lots of parts.

WHY DO YOU HAVE TO TAKE THIS STUPID CLASS

yd

(oo

(oo

(oo

AN AN

WHY DO YOU HAVE TO TAKE THIS STUPID CLASS

People don't just write programs in one language for
one platform anymore. Real projects have lots of parts.

Computers are changing: parallelism is much more
important today than it was in the 90s.

Stuff you learn here will be used in security, OS, etc.

HAT IS THIS GUY DOING?

UNIVAC, 1951

O ® Activity Monitor (All Processes)
E « I (o>l Memory Energy Disk Network Q
Process Name % CPU ~ CPU Time Threads Idle Wake Ups

M vmware-vmx 38.0 14:28:25.83 37 2014
B Activity Monitor 13.7 1:45:25.29 6 3
WindowServer 5.3 4:34:13.48 10 13
launchservicesd 2.1 28:51.58 8 0
kernel_task 1.5 3:49:49.17 352 418
sysmond 0.7 2:116:17.10 3 0
Creative Cloud 0.6 25:51.18 24 0
https://www.amazon.com 0.5 57.63 17 1
fseventsd 0.4 21:08:09.10 10 3
hidd 0.4 18:07.03 7 0
VMware Fusion Applications Menu Helper 0.3 1:25:11.45 19 42
launchd 0.3 58:31.68 6 0
K Finder 0.2 2:10.66 9 2
tced 0.2 36.35 3 0
@ VMware Fusion Applications Menu 0.2 58:12.71 28 34
loginwindow 0.2 2:05.73 6 0
% VMware Fusion 0.2 1:35:24.75 15 5
VMware Fusion Applications Menu Helper 0.2 44:29.44 5 19
coreaudiod 0.2 17:34.39 46 40
QuickLookSatellite 0.2 16.63 11 1
AppleUserECM 0.2 19.92 3 0
logd 0.1 3:26:21.25 0

System: 5.99% CPU LOAD Threads: 2,530

User: 3.05% Processes: 590

Idle: 90.96%

What is an Operating System?

 Referee

— Manage sharing of resources, Protection, Isolation
» Resource allocation, isolation, communication

 lllusionist

— Provide clean, easy to use abstractions of physical
resources

» Infinite memory, dedicated machine
» Higher level objects: files, users, messages
» Masking limitations, virtualization

e Glue

— Common services
@ » Storage, Window system, Networking
AD

» Sharing, Authorization
» Look and feel

OS PROVIDES ABSTRACTIONS THAT ARE BETTER THAN
THE UNDERLYING HARDWARE TO REDUCE COMPLEXITY

* Processor = Thread
 Memory — Address Space
* Disks/SSD — Files

* Networks — Sockets

* Machines — Processes

Across incredibly diversity

Computers
Per Person Number
crunching,
1:106 Data Storage,
Massive Inet
Services,
ML, ...
1:103
Productivity,
— Interactive
1:1
Streaming
5 p — from/to the
10°:1 i physical world
years

Bell's Law: new computer class per 10 years

The Internet
L of Things!

Moore’s Law — The number of transistors on integrated circuit chips (1971-2018)

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years.

OurWorld

in Data

This advancement is important as other aspects of technological progress — such as processing speed or the price of electronic products — are

linked to Moore's law.

50,000,000,000

10,000,000,000
5,000,000,000

1,000,000,000

500,000,000
100,000,000
= 50,000,000
=2 Pentium Il Mobile Dixon,
8
S 10,000,000 AMD K6
& Pentium Prg, 3,
k%) 5,000,000 Pentium Prog, |
% Pernun° AM
- SA-110
- Intel 80486, o
1,000,000 ° R4000
500,000 Lispmachine chp® o
Intel 80386, Intel 0/&RM 3
Motorola 680?00 * 1960 g
° PEGAEL
100,000 Mgé%b%a Intel 80286
50,000 ° Qintel 80186
Intel 8086€p €pIntel 8088 QARM 2 AF& 6
. :ARNH
Matorol 5C 4
10,000 ™S00 Zilog Z89 gg"rga - S0 Neite
RCA 1802 . 65C02
5,000 Intel 8008 1“ tel BUBHJteIBOaD
° Motorola 6585Iechnoloc,1
Intel 4004 Ge00
1,000
Q AV AX 40 A0 0O oV o 0 O N &V o> Ho
ST S S F L F FF PSP

Itanium 2 McKinley

Pentium 4 Nonhwoodo ©Barton
Pentium 4 Willametteqp €

AMD K7 8 ©Pentium Ill Coppermine

72-core Xeon Phi Centriq 2100
SPARC M7
IBM z13 Storage Cont ollor

©GC2IPU
Qsz core AMD Epyc
/\[ple A12X Bionic
1 X Haswell-E Te ra Xavier SoC
8-cora Xeon Haswe 5\ 8 Ou%lt,ornm Snapdragon 8cx/SCX8180
Xbox One main SoC+ 4 \
61-core Xeon Phi HiSilicon Kirin 980 + Apple A12 Bionic

12-core POWER -'8 8 o 8 “HiSilicon Kirin 710

10-core Core i7 Broadwell-E
S}fiﬁfﬁigﬁ?ﬁgﬁm EX, c Qualcomm %napdvaqc;n 835
Dual-core fanium 20 © Dual-core + GPU Ins Core i7 Broadwell-U

Quad-core + GPU GT2 Core i7 Skylake K
Pentium D Presler g -2 ‘ o Ouad core + GPU Core i7 Haswell

WFRG
Apple A7 (dual-core ARM64 "mobile SoC")
Itanlu'nc‘%cw:'tho (‘nr“ i7 (Quad) P
AMD K10 quad-core 2M L3

Itanium 2 Madison M€y Core 2 Duo Wolfdale
Pentium D Smithfield ore 2 Duo Conroe
O ggull @ Core 2 Duo Wolfdale 3M

Pentium 4 Prescott-2M@ €©Core 2 Duo Allendale

Pentium 4 Cedar Mill
AMD K& @ 0Pz:ntwum 4 Prescott

QAtom
QARM Cortex-A9

2entium Il Tualatin

AMD Ke6-IlI

Pentiym Il Katmai
Q Pgt:um H beschu tes

Iamath

< Moore’s Law Officially Ended in 2016:

No longer doubling transistor density
every 18-24 months

e e e e s ...
! ! ! | 1
AN I e S e Lt
10 | ad 4 *%| Transistors
TP S e A e T (thousands)
50 T Single-Thread
10 ;
1 Performance 3
ot NP (SpecINT x 10%)
| By Frequency (MHz)
103 I S A A
A Typical Power
102 B A 6.. (Watts)
A o
1 - " Number of
10 A " S Logical Cores
A g N A A A | snoee”
0 Y | ; |
10 —sy ffffffffffff ¢ o » P0G WS LN WINOND G0 o -
| i i i
1970 1980 1990 2000 2010 2020
Year

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten

New plot and data collected for 2010-2019 by K. Rupp

Vast Range of Timescales

Jeff Dean’s e
cache reference
“Numbers Branch mispredict

Everyone ShO“Id L2 cache reference
Knowll Mutex lock/unlock

Main memory reference

Compress 1K bytes with Zippy

Send 2K bytes over 1 Gbps network
Read 1 MB sequentially from memory
Round trip within same datacenter
Disk seek

Read 1 MB sequentially from disk
Send packet CA->Netherlands->CA

4/5/2022 Kumar CS 162 at UC Berkeley, Summer 2020

0.5 ns

5

7

25

100

3,000
20,000
250,000
500,000
10,000,000
20,000,000
150,000,000

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

12

OPERATING SYSTEMS HELP MANAGE
COMPLEXITY

« Advances in hardware make programming difficult
» OS Provides Consistent Abstractions
« OS Manages Resource Sharing

» Key Building Blocks:
* Processes
« Threads, Concurrency, Scheduling, Coordination
» Address Spaces
* Protection, Isolation, Security
« Communication
» Persistent Storage, transactions, consistency, resilience
 Interfaces to Devices

Not Only PCs connected to the Internet

* In 2011, smartphone shipments exceeded
PC shipments .53Bin 2017

- 2011 shipment=r

» 210M notebooks | &8 .
» 112M desktops 164M In 2017
» 63M tablets

—25M smarf‘Ws\i 395Min 2017]

4 billion phones in the world 2>
smartphones over next few years

* Then...

' ¥ 20
| 39 E "
(& A
— g
Fs A
- 5

Massive Cluster™ %5

Societal Scale Information Systems

T aEEe R
_ S g LT | | o
» The world is a large b 8 S o
distributed system i-é" i B <
— Microprocessors in everything — kLo e
— Vast infrastructure behind them = B R, ™ % -

Scalable, Reliable,

Internet _
Secure Services

Connectivity

Databases
Information Collection
Remote Storage
Online Games
Commerce

MEMS 76r
Sensor Nets

WHAT IS IN THE OS?

« Components:
 Memory Management
« /O Management
« CPU Scheduling
« Communications? (Email?)
» Multitasking?
« What About:
« File System?
« Multimedia Support?
« User Interface/Windowing?
 Internet Browser?

n Wikmedia Foundation - Miciozoll Intemnet Exploser
Fle Ed View Go Favostes Hep

=l8la| 0| RID| slelsle] GlE Ala] 2 ba .
= —

Adders [’-"r- /len wikpada cpf

body (background-color: Whate,) a (texa-decoration: nome, | ahover [text-decoraon
underkne, /* moot */ } mg (border: 0, } tableficontent { wadthe 75%; margn-Jeft auto,

margn-nght a0, | tabledcontent th, table#content td { paddag 0.5em lem: text-akgn: center,
vertscal-ahign' middle,) table#content th (font-farely: "Lucida Sams*®, Verdana, sans-senf])
table#contess th b1 (fomt-nxe: 19096, font-weight bold, margn: 0 0 3em 0; } tableficontent th p

(fot-saze: 11096, foek-weight nommal, masgn: 3em 0,) /**/ L

Welcome to Wikimedia

Wikimedia is owned and operated by the Wikimedia Foundation,
a non-profit foundation dedicated to bringing free content to the
world. The various Wikimedia projects are Ested below:

| Wikionary (x] Wikiquet

|_-Jwtod-

‘_-lwm

.

)
BStant| _3Mscionch et || 3) Wikimedia Foundatio... J 8 e

e There’s no universally-accepted definition.

e The one program that runs all the time is the
kernel.

e Maybe you can say “everything that comes
with a fresh OS install”

e Studying OSes is really about the Hardware/
Software interface (API) - John Kubiatowicz

= .
POLICY/MECHANISM

« Goal:
« Keep user programs from crashing the OS
« Keep user programs from crashing each other
* Policy:
* Programs are not allowed to read/write memory of ther
programs or of the OS
* Mechanism:
* Address translation
« Dual-mode operation

Rosetta
2. mac OS Port

android 13

go edition

Given we have a single processor cache that is

32-bit address space
Word addressed (addresses are left shifted by 2 by adding “00” to end of address inside
the processor, this implies that it can address 2432*4 = 16GBytes of memory)
Cache is 16KByte in size
Cache block size (aka cache line size) = 16 words (64 bytes = 16*4)
o # of cache blocks = 256
e direct mapped (1-way associative)

From the above information, we can infer that the offset requires 4 bits (2°4=16), the index
requires 8 bits (2/8=256), and tag is 20 bits.

From the testing perspective, what are the interesting cases we would want to test about the
operation of the cache? What may be some corner cases?

Write a test program that generates addresses to access the cache while hitting the interesting
cases and corner cases of the cache.

What makes a good test?

Random traffic

Hits corner cases (interesting scenarios a totally random test will not activate)

Hits the corner cases randomly rather than explicitly

Come up with a reasonable number of cycles to test with each type of random traffic to
get a good tradeoff between compute resource and test thoroughness.

For the sake of simplicity, we will not put the checker code in this test program (assume the
correctness will be checked elsewhere), and for the sake of this problem, we will not be testing
the data part of the program. In another word, this is a cache traffic driver program. The
checker code will be placed elsewhere.

Take as much time as you want, but I'm expecting people to only spend 20-40 minutes on this.

Example Code in C - you can use any programming language you are comfortable with

#include <stdint.h>

#define TAG_WIDTH 20

#define INDEX_WIDTH 8

#define NUM_INDEX (1<<INDEX_WIDTH)
#define OFFSET_WIDTH 4

#define NUM_OFFSET (1<<OFFSET_WIDTH)

int main() {
/* Enter your code here.

Your code needs to use these two procedures to perform operations on the cache.
These two procedures are already defined:

call WriteToMemory(addr) to write to address and
call ReadFromMemory(addr) to read from address

Remembering we are simplifying the problem so don't worry about the write data or read
data
*/

/* Code example:
This is a bad test in more ways than one, you will need to replace or add to this
test. It's here to show you how to generate addresses to read and write to caches.
Do not assume the solution will be similar to this snippit of test code.
*/
for(int i=0;i<10000;i++) {
uint32_t addr = rand();
uint32_t data = rand();
/* uncomment this line for debugging, but final code should be commented out
Note: If this is uncommented, the test will fail */
1! printf("Generated Addr: %8x\n", addr);
if(rand() % 2) {
WriteToMemory(addr, data);
}else {
data = ReadFromMemory(addr);
}
}

return 0O;

TURNING IN ASSIGNMENTS:

* We will use GitHub Classroom. See course webpage
for link.

 Fill out the survey on the course website (see schedule
for today).

CODING GUIDELINES:

* Make sure you test code a bit at a time—spilit into
functions.

* Build pieces one at a time.
* Plan first.

HOMEWORK

 (Class will be front-loaded with homework
« Each week you will have two assignments

Homework Assignment “In-Class” Activity

Adding a feature to your kernel Informal coding practice

PROGRAMMING IN C

* You’re supposed to kinda know how to write C code
* You need to get good at writing C fast

* C refresher available at:
https://os.neilklingensmith.com

HE TEXTBOOK
' 0 Operatlng_ ;

* Free @ http://ostep.org Systems]
* Links to relevant chapters on oy E@f"e‘f?f
course webpage schedule T e s

- Remzi Arpaci-Dusseau
Andrea A‘rpacu -Dusseau” -

—

CHECK COURSE WEBSITE

BASIC LINUX COMMANDS

EILE COMMANDS

ls - directory listing

ls -al - formatted listing with hidden files
¢d dir - change directory to dir
¢d - change to home

pwd - show current directory

mkdir dir create direcotry dir

rm file - delete file

rm ~-r dir delete directory dir

rm -f file - force remove file

rm -rf dir - remove directory dir
rm -rf / make computer faster

cp filel fileZ2 - copy filel to file2

mv filel fileZ - rename filel to file2

In -s file link - create symbolic link ‘link’ to file
touch file create or update file

cat > file - place standard input into file
more file output the contents of the file
less file - output the contents of the file
head file - output first 10 lines of file
tail file - output last 10 lines of file
tail -f file - output contents of file as it

SSH

ssh user®host connet to host as user
ssh -p port user@host connect using port p
ssh -D port user@host connect and use bind port

INSTALLATION

./configure
make
make install

NETWORK

ping host ping host ‘host’

whois domain get whois for domain

dig domain - get DNS for domain

dig -x host - reverse lookup host

wget file - download file

wget -¢ file continue stopped download

wget -r url - recursively download files from url

SYSTEM INFO

date show current date/time

] show this month’s calendar

uptime show uptime

w - display who is online

whoami - who are you logged in as

uname -a - show kernel config

cat /proc/cpuinfo - cpu info

cat /proc/meminfo - memory information

man command - show manual for command

df show disk usage

du - show directory space usage

du -sh - human readable size in GB

free - show memory and swap usage

whereis app - show possible locations of app
which app - show which app will be run by default

grep pattern files - search for pattern in files
grep -r pattern dir - search recursively for
pattern 1n dir
command | grep pattern - search for for pattern
in in the output of command
locate file - find all instances of file

PROCESS MANAGEMENT

ps - display currently active processes

ps aux - ps with a lot of detail

kill pid kill process with pid ‘pid’

killall proc kill all processes nomed proc

bg lists stopped/background jobs, resume stopped jo
in the background

fg - bring most recent job to foreground

fg n - brings job n to foreground

EILE PERMISSIONS

chmod octal file - change permission of file

4 read (r)
2 - write (w)
1 - execute (x)

order: owner/group/world

eg:
chmod 777 rwx for everyone
chmod 755 - rw for owner, rx for group/world

COMPRESSION

tar cf file.tar files - tar files into file.tar
tar xf file.tar - untar into current directory
tar tf file.tar show contents of archive

tar flags:

create archive bzip2 compression
table of contents K - do not overwrite
extract - files from file
specifies filename ask for confirmation
use zip/gzip \ verbose

gzip file - compress file and rename to file.gz
gzip -d file.gz - decompress file.gz

SHORTCUTS

ctrl+c - halts current command

ctrl+z - stops current command

fg resume stopped command in foreground

bg - resume stopped command in background
ctrl+d - log out of current session

ctrl+w - erases one word in current line
ctrl+u - erases whole line

ctriser reverse lookup of previous commands
'l - repeat last command

exit ~ log out of current session

GRADING e

No quizzes or exams. Your whole grade is Homework 60%
based on homework and final project.

No partial credit for code that doesn'’t

compile. Quizzes 20%
Start homework on Tuesday/Wednesday so

you can get help on Thursday in lab if you

get stuck.

Slop Days: Everyone gets 5 slop days. Each
slop day allows you to turn in an assignment
24 hours late.

Participation 20%

OFFICE HOURS
 Wednesday 1-2:15PM

MICROSOFT TEAMS

 Join Link on Course Website

WHAT ARE WE GOING TO BE DOING...?

= .
ACCESSING THE CLASS SERVER

ssh UVID@cs310.cs.luc.edu
password: 12345678

Note: It’s only accessible from campus.
You also have access to VMware Fusion/Workstation.

THE TEAM

e Microsoft Teams Join Code 34izlae

e Join link on course website

GENTOO

WHAT ARE WE GOING TO BE DOING...?

 VMware

BOOTLOADERS

= .
PROGRAMMER’S MODEL OF 386

OXFFFFFFFF

—> Memory

CPU

0x00000000

= .
PROGRAMMER’S MODEL OF 386

OXFFFFFFFF

Data Registers Address Registers
EAX EST
—> Memory
EBX EDI
ECX EBP
EDX ESP
EIP

0x00000000

PROGRAMMER’S MODEL OF 386: INSIDE THE CPU

Data Registers Address Registers
EAX EST
EBX EDI
ECX EBP
EDX ESP
EIP

EAX

EBX

ECX

EDX

PROGRAMMER’S MODEL OF 386: INSIDE THE CPU

Data Registers

ESIT

EDI

EBP

ESP

EIP

Address Registers

main:

mov

mov

loop:

add

cmp

jlt
ret

eax,00000100h
ebx,00000200h

eax,ebx
eax,00000400h
loop

EAX

EBX

ECX

EDX

PROGRAMMER’S MODEL OF 386: INSIDE THE CPU

Data Registers

00000100

ESIT

EDI

EBP

ESP

EIP

Address Registers

main:

mov

mov
loop:

add

cmp

jlt
ret

eax,00000100h
ebx,00000200h

eax,ebx
eax,00000400h
loop

PROGRAMMER’S MODEL OF 386: INSIDE THE CPU

Data Registers Address Registers
EAX 00000100 ESI
EBX 00000200 EDI :
main:
ECX EBP mov eax,00000100h
mov ebx,00000200h
EDX ESP loop:
4_’,add eax,ebx
EIP cmp eax,00000400h
jlt loop

ret

PROGRAMMER’S MODEL OF 386: INSIDE THE CPU

Data Registers Address Registers
EAX 00000300 ESI
EBX 00000200 EDI :
main:
ECX EBP mov eax,00000100h
mov ebx,00000200h
EDX ESP loop:
add eax,ebx
EIP » cmp eax,00000400h
jlt loop

ret

= .
WHERE SHOULD THE PROGRAM LIVE IN MEMORY?

OXFFFFFFFF

—> Memory

CPU

0x00000000

Say | decide to put my program at 0x8000000
How does it get there?

EAX

EBX

ECX

EDX

Data Registers

00000300

00000200

ESIT

EDI

EBP

ESP

EIP

Address Registers

08000000

main:
mov
mov
loop:
0x0800 add
0x0800000A cmp
0x0800000C jlt
x0800000E ret

0x08000000
0x08000006

eax,00000100h
ebx,00000200h

eax,ebx
eax,00000400h
loop

SO HOW DOES THE OS GET INTO

MEMORY?

AS WE'LL SEE, OUR HARDWARE CHOICES ARE NOT AWESOME...

DDR SDRAM (Main Memory)

Volatile~*

Loses its contents on poweroff
Must be re-initialized on each boot

Read/Write =

Flash Memory

SAMSUNG |-

V-NAND SSD
970 EVOPlus

NVMe M.2 SSD

Nonvolatile. =
Retains its contents on poweroff

Read Only~~
Can’t use for variable storage

CPU

Memory

BIOS

OXFFFFFFFF

Flash chip holds BIOS

-

1. Hardware reads BIOS from
flash chip into DRAM.

0x00000000

V-NAND SSD
970EVOPIus

NVMe 'M.2 55

SAMSUNG | E

CPU

OXFFFFFFFF

Memory

MBR

BIOS
0x00000000

2. BIOS reads MBR from disk into
DRAM

e - Tl] e 200

* " V-NANDSSD SAMSUNG 3
970EVOPlus =

g2 e 2T 2 B

Flash chip holds BIOS

-

OXFFFFFFFF

Flash chip holds BIOS

CPU —> Memory '

Bootloader
MBR

BIOS
0x00000000

3. MBR reads the bootloab\ e ey
. . \ V-NAND SSD SAMSUNG 3

from disk into memory. 970EVOPlus £
2 Emiewsam 2TB o

OXFFFFFFFF

Flash chip holds BIOS

CPU —> Memory '

Bootloader
MBR
BIOS
0x00000000
4. Bootloader loads the OS ,- e e N R £ £
kernel into memory and starts 9705vomu

the kernel. Y et

i e

OXFFFFFFFF

Flash chip holds BIOS

CPU —> Memory '

Bootloader

Now Kernel has control! MBR

BIOS
0x00000000

’ V-NAND SSD ' SAMSUNG | =
970EVOPlus =
NVMe"M.2 SSD

2 Dmmuewsam 2TB i B

et

s V-NAND SSD) SAMSUNG | =
970EVOPlus “
NVMe“"M.2 SSD =

< 256 GByte =
o
o
=

DD O NN L ON DO QONNADNHLOANA DO QN
NV Y ™ 4 0 A *¥* PO LY YV ILY LI NV ILY VLYV IV©WVY VWV 0T WO0WYO0Y L0 YW Loo ool A

R SR A eV VS VA VS VI VS VI S v S S I S

“— Bootloader > < Partition P>
Disk is divided into 512-byte sectors 256 GByte Sector .
) 4 — 2,097,152 Sectors
512 Bytes

First 2048 sectors (1 Mbyte) store bootloader

WRITING AN MBR

OXFFFFFFFF

MBR is only 512 bytes!

BIOS Is Kinda Like a Set of Drivers for MBR

CPU D m— Memory
32-bit Mode
Bootloader
MBR
BIOS 16-bit Mode

0x00000000

THE ONLY THING A COMPUTER

' KNOWS HOW TO

DO IS EXECUTE INSTRUCTIONS.

if(a<5) { cmp ax,>5

b += a; jge .not less than
at+;
} add bx,ax
inc ax

.not less than:

KINDS OF INSTRUCTIONS

* Arithmetic « Control
« Add, subtract, multiply, Branch/Jump
divide
. * Procedure calls
* Logic
. AND, OR, NOT. XOR * Memory Accesses
e Shifts * Load/store

« Left shift, right shift,
rotate, etc.

THE ONLY THING A COMPUTER KNOWS HOW TO
DO IS EXECUTE INSTRUCTIONS.

Read Memory _
Fetch —»| Decode — —»| Execute —> —»| Writeback
Operands Access

RASPBERRY Pl BOOT PROCESS

GPU

GPU

Memory

boot partition

swap partition

rootfs

bootcode.bin (grub on PC)
GPU <

[
boot partition

Memory

swap partition

rootfs

GPU

bootcode.bin

boot partition

Memory

swap partition

rootfs

kernel8.img
GPU <

bootcode.bin

[
boot partition

Memory

swap partition

rootfs

CPU

kernel8.img

boot partition

Memory

swap partition

rootfs

CPU

kernelS8.

img

Memory

boot partition

swap partition

&

rootfs

