
CS 310

CONCURRENCY

• Shell homework due Wednesday 9/10 11:59 PM.

ADMINISTRIVIA

REVIEW FROM LAST TIME: CREATING A NEW
PROCESS

PRACTICAL MOTIVATION FOR CONCURRENCY

Back to Jeff Dean’s
“Numbers
Everyone Should
Know”

Handle I/O in
separate thread,
avoid blocking
other progress

THREAD USE CASE: WEB SERVER
• Example: Web server

• Receives multiple simultaneous requests

• Reads web pages from disk to satisfy each request

• One thread per request. Thread handles only that request.

• Easy to program (maybe), and fast!

– State is stored in the stacks of each thread and the thread scheduler

– Simple to program if they are independent…

MULTI-THREADED WEB SERVER
Main Thread

Request 1 arrives

Create thread

Request 2 arrives

Create thread

Thread 1

Read in request 1

Start disk I/O

Disk I/O finishes

Respond to request 1

Exit

Thread 2

Read in request 2

Start disk I/O

time

It’s the mid 1990s and you work at Microsoft.

You need to double the speed of Excel in two years.

What do you do?

It’s the mid 1990s and you work at Microsoft.

You need to double the speed of Excel in two years.

What do you do?		 Take a vacation

Moore’s Law – CPU transistors counts

“Number of transistors in a chip
doubles every 18 months”

How? Transistors are getting
exponentially smaller!

How small? Today: 7nm! 
(maybe smaller, kind of complicated)

< ½ the size of most viruses!

MOORE’S LAW – CPU TRANSISTORS COUNTS

PROCESSORS KEPT GETTING FASTER TOO

• We could make processors go very fast

– But doing so uses more and more power

• More power means more heat generated

– And chips typically work up to around 100°C

– Hotter than that and things stop working

• We add heat sinks and fans and water coolers to keep chips cool

– But it’s hard to remove heat quickly enough from chips

• So, power consumption ends up limiting processor speed

POWER IS A MAJOR LIMITING FACTOR ON SPEED

• Moore’s Law corollary: Denar Scaling

– As transistors get smaller, the power density stays the same

– Which is to say that the power-per-transistor decreases! 

• Making the processor clock speed faster uses more power

– But the two balance out for roughly net even power

– So not only do we get more transistors, but chip speed can be faster too

• From our Excel example:

– In two years, new hardware would run the existing software twice as

fast

DENARD SCALING

Then they stopped getting faster ~2006: Leakage
current becomes
significant 

Now smaller
transistors doesn’t
mean lower power

THEN THEY STOPPED GETTING FASTER

In summary:

• Making transistors smaller doesn’t make them lower power,

• so if we were to make them faster, they would take more power,

• which will eventually lead to our processors melting…

• and because of that, we can’t reliably make performance better

by waiting for clock speeds to increase.

How do we continue to get better computation performance?

SO… NOW WHAT?

EXPLOIT PARALLELISM!

• I want to peel 100 potatoes as fast as possible: 

– I can learn to peel potatoes faster 

OR 

– I can get 99 friends to help me

• Whenever one result doesn’t depend on another, 
doing the task in parallel can be a big win!

PARALLELISM ANALOGY

Two processes A and B
Parallelism versus Concurrency BA

BA

B

A

B

A
OR

time

time

time time

Serial execution

Parallel execution

Concurrent execution

PARALLELISM VERSUS CONCURRENCY
• Parallelism

• Two things happen strictly simultaneously

• Concurrency

• More general term

• Two things happen in the same time window

• Could be simultaneous, could be interleaved

• Concurrent execution occurs whenever two processes are both active

18

B

A
OR

time time

OR

time

CONCURRENCY IN HARDWARE

I$

movq (rdi),rax 
movq (rsi),rdx 
movq rdx,(rdi) 
movq rax,(rsi) 
addq rcx,rbx

PC Decode ALU

RAX 00000000
RBX 00000000
RCX 00000000
RDX 00000000
RSI 080A0000
RDI 080C0000

4

Register File

D$

I$

movq (rdi),rax 
movq (rsi),rdx 
movq rdx,(rdi) 
movq rax,(rsi) 
addq rcx,rbx

PC Decode ALU

RAX 00000000
RBX 00000000
RCX 00000000
RDX 00000000
RSI 080A0000
RDI 080C0000

4

mo
vq

(r
di
),
ra
x

Register File

D$

I$

movq (rdi),rax 
movq (rsi),rdx 
movq rdx,(rdi) 
movq rax,(rsi) 
addq rcx,rbx

PC Decode

Register File

ALU

RAX 00000000
RBX 00000000
RCX 00000000
RDX 00000000
RSI 080A0000
RDI 080C0000

4

mo
vq

(r
di
),
ra
x

D$

I$

movq (rdi),rax 
movq (rsi),rdx 
movq rdx,(rdi) 
movq rax,(rsi) 
addq rcx,rbx

PC Decode

Register File

ALU D$

RAX 00000000
RBX 00000000
RCX 00000000
RDX 00000000
RSI 080A0000
RDI 080C0000

4

mo
vq

(r
di
),
ra
x

080C0000
080C0000

00000000

I$

movq (rdi),rax 
movq (rsi),rdx 
movq rdx,(rdi) 
movq rax,(rsi) 
addq rcx,rbx

PC Decode

Register File

ALU D$

RAX 00000000
RBX 00000000
RCX 00000000
RDX 00000000
RSI 080A0000
RDI 080C0000

4

mo
vq

(r
di
),
ra
x

080C0000
080C0000

00000000

FFFFFFFF

I$

movq (rdi),rax 
movq (rsi),rdx 
movq rdx,(rdi) 
movq rax,(rsi) 
addq rcx,rbx

PC Decode

Register File

ALU D$

RAX FFFFFFFF
RBX 00000000
RCX 00000000
RDX 00000000
RSI 080A0000
RDI 080C0000

4

mo
vq

(r
di
),
ra
x

080C0000
080C0000

00000000

FFFFFFFF

I$

movq (rdi),rax 
movq (rsi),rdx 
movq rdx,(rdi) 
movq rax,(rsi) 
addq rcx,rbx

PC Decode ALU

RAX FFFFFFFF
RBX 00000000
RCX 00000000
RDX 00000000
RSI 080A0000
RDI 080C0000

4

Register File

D$

mo
vq

(r
si
),
rd
x

I$

movq (rdi),rax 
movq (rsi),rdx 
movq rdx,(rdi) 
movq rax,(rsi) 
addq rcx,rbx

PC Decode ALU

RAX FFFFFFFF
RBX 00000000
RCX 00000000
RDX 00000000
RSI 080A0000
RDI 080C0000

4

Register File

D$

mo
vq

(r
si
),
rd
x

I$

movq (rdi),rax 
movq (rsi),rdx 
movq rdx,(rdi) 
movq rax,(rsi) 
addq rcx,rbx

PC Decode ALU

RAX FFFFFFFF
RBX 00000000
RCX 00000000
RDX 00000000
RSI 080A0000
RDI 080C0000

4

Register File

D$

mo
vq

(r
si
),
rd
x

080A0000
080A0000

00000000

I$

movq (rdi),rax 
movq (rsi),rdx 
movq rdx,(rdi) 
movq rax,(rsi) 
addq rcx,rbx

PC Decode ALU

RAX FFFFFFFF
RBX 00000000
RCX 00000000
RDX 00000000
RSI 080A0000
RDI 080C0000

4

Register File

D$

mo
vq

(r
si
),
rd
x

080A0000
080A0000

00000000

A5A5A5A5

I$

movq (rdi),rax 
movq (rsi),rdx 
movq rdx,(rdi) 
movq rax,(rsi) 
addq rcx,rbx

PC Decode ALU

RAX FFFFFFFF
RBX 00000000
RCX 00000000
RDX A5A5A5A5
RSI 080A0000
RDI 080C0000

4

Register File

D$

mo
vq

(r
si
),
rd
x

080A0000
080A0000

00000000

A5A5A5A5

HARDWARE PARALLELISM

I$

movq (rdi),rax 
movq (rsi),rdx 
movq rdx,(rdi) 
movq rax,(rsi) 
addq rcx,rbx

PC Decode ALU

RAX 00000000
RBX 00000000
RCX 00000000
RDX 00000000
RSI 080A0000
RDI 080C0000

4

Register File

Fetch Decode Execute Mem

Writeback

D$

I$

movq (rdi),rax 
movq (rsi),rdx 
movq rdx,(rdi) 
movq rax,(rsi) 
addq rcx,rbx

PC Decode ALU

RAX 00000000
RBX 00000000
RCX 00000000
RDX 00000000
RSI 080A0000
RDI 080C0000

4

Register File

D$

I$

movq (rdi),rax 
movq (rsi),rdx 
movq rdx,(rdi) 
movq rax,(rsi) 
addq rcx,rbx

PC Decode ALU

RAX 00000000
RBX 00000000
RCX 00000000
RDX 00000000
RSI 080A0000
RDI 080C0000

4

Register File

mo
vq

(r
di
),
ra
x

D$

I$

movq (rdi),rax 
movq (rsi),rdx 
movq rdx,(rdi) 
movq rax,(rsi) 
addq rcx,rbx

PC Decode ALU

RAX 00000000
RBX 00000000
RCX 00000000
RDX 00000000
RSI 080A0000
RDI 080C0000

4

Register File

mo
vq

(r
si
),
rd
x

mo
vq

(r
di
),
ra
x

D$

I$

movq (rdi),rax 
movq (rsi),rdx 
movq rdx,(rdi) 
movq rax,(rsi) 
addq rcx,rbx

PC Decode ALU

RAX 00000000
RBX 00000000
RCX 00000000
RDX 00000000
RSI 080A0000
RDI 080C0000

4

Register File

mo
vq

rd
x,
(r
di
)

mo
vq

(r
si
),
rd
x

mo
vq

(r
di
),
ra
x

D$

I$

movq (rdi),rax 
movq (rsi),rdx 
movq rdx,(rdi) 
movq rax,(rsi) 
addq rcx,rbx

PC Decode ALU

RAX 00000000
RBX 00000000
RCX 00000000
RDX 00000000
RSI 080A0000
RDI 080C0000

4

Register File mo
vq

rd
x,
(r
di
)

mo
vq

(r
si
),
rd
x

D$

mo
vq

(r
di
),
ra
x

mo
vq

ra
x,
(r
si
)

I$

movq (rdi),rax 
movq (rsi),rdx 
movq rdx,(rdi) 
movq rax,(rsi) 
addq rcx,rbx

PC Decode ALU

RAX 00000000
RBX 00000000
RCX 00000000
RDX 00000000
RSI 080A0000
RDI 080C0000

4

Register File mo
vq

rd
x,
(r
di
)

mo
vq

(r
si
),
rd
x

D$

mo
vq

(r
di
),
ra
x

mo
vq

ra
x,
(r
si
)

I$

movq (rdi),rax 
movq (rsi),rdx 
movq rdx,(rdi) 
movq rax,(rsi) 
addq rcx,rbx

PC Decode ALU

RAX 00000000
RBX 00000000
RCX 00000000
RDX 00000000
RSI 080A0000
RDI 080C0000

4

Register File mo
vq

rd
x,
(r
di
)

mo
vq

(r
si
),
rd
x

D$

mo
vq

(r
di
),
ra
x

mo
vq

ra
x,
(r
si
)

• Pipelining (Instruction-Level Parallelism)
• Increase the clock frequency because signals don’t

travel as far

I$

movq (rdi),rax 
movq (rsi),rdx 
movq rdx,(rdi) 
movq rax,(rsi) 
addq rcx,rbx

PC Decode ALU

RAX 00000000
RBX 00000000
RCX 00000000
RDX 00000000
RSI 080A0000
RDI 080C0000

4

Register File mo
vq

rd
x,
(r
di
)

mo
vq

(r
si
),
rd
x

D$

mo
vq

(r
di
),
ra
x

mo
vq

ra
x,
(r
si
)

• Program Counter controls which instruction executes.
• Normally, the PC advances one instruction on each cycle.
• BUT, it can be manually changed by the software.

Goal: Make computer faster by performing multiple tasks

Solutions:

1. Use multiple cores to run multiple tasks in parallel

2. Run multiple tasks on a single core concurrently

HOW ELSE DO PROCESSORS EMPLOY
CONCURRENCY?

Goal: Make computer faster by performing multiple tasks

Solutions:

1. Use multiple cores to run multiple tasks in parallel

2. Run multiple tasks on a single core concurrently

HOW ELSE DO PROCESSORS EMPLOY
CONCURRENCY?

Multiprocessor Systems (in pictures)

43

Processor 0

Control

Datapath
PC

Registers

(ALU)

Memory
Input

Output

Bytes

I/O-Memory Interfaces

Processor 0
Memory
Accesses

Processor 1

Control

Datapath
PC

Registers

(ALU)

Processor 1
Memory
Accesses

• A computer system with at least 2 processors or cores

– Each core has its own registers

– Each core executes independent instruction streams

– Processors share the same system memory

• But use different parts of it

– Communication possible through memory accesses

• Deliver high throughput for independent jobs via task-level
parallelism

MULTIPROCESSOR SYSTEMS (IN WORDS)

Run Chrome and Spotify simultaneously

• Each are separate programs

• Each has a different memory space

• Each can run on a separate core

Don’t even need to communicate...

Note: OS can fake this by interleaving processes, 
but hardware can make it actually simultaneous

MULTIPROCESSOR EXAMPLE

Goal: Make computer faster by performing multiple tasks

Solutions:

1. Use multiple cores to run multiple tasks in parallel

2. Run multiple tasks on a single core concurrently

HOW ELSE DO PROCESSORS EMPLOY
CONCURRENCY?

Basic idea: Processor resources are expensive and should not be left idle 

Long memory latency to memory on cache miss?

– Hardware switches threads to bring in other useful work while waiting for cache

miss

– Cost of thread context switch must be much less than cache miss latency

• Switching threads is less expensive than processes because they share
memory

MULTITHREADING PROCESSORS

Memory
Input

Output

Bytes

I/O-Memory Interfaces

Processor

Control

Datapath
PC 0

Registers 0

(ALU)

PC 1

Registers 1

• Two copies of PC and Registers inside
processor hardware

• Looks like two processors to software
(hardware thread 0, hardware thread 1)

• Control logic decides which thread to
execute an instruction from next

HARDWARE SUPPORT FOR MULTITHREADING

• Multithreading => Better utilization

– ≈5% more hardware for ≈1.3x better performance?

– Gets to share ALUs, caches, memory controller

• Multicore => Duplicate processors

– ≈50% more hardware for ≈2x better performance?

– Share some caches (L2 cache, L3 cache), memory controller

• Modern machines do both

– Multiple cores with multiple threads per core

MULTITHREADING VERSUS MULTICORE

• Modern operating systems must manage concurrency

– Both parallel operation and interleaving operations

• Concurrency is valuable

– Performance gains are the reason

BACK UP TO THE OS PERSPECTIVE

SPEEDUP & AMDAHL’S LAW

• Shell homework due tonight 11:59 PM.
• Quiz Wednesday 9/20 on Processes & Concurrency
• Homework 2 is Out. Due next Wednesday 9/20.

ADMINISTRIVIA

• A task that used to take 1s now takes 0.5s
• Speedup is 2x

• Speedup > 1 means new way is faster
• Speedup < 1 means new way is slower

SPEEDUP Speedup =
Told

Tnew

• We have some task that we want to speed up.
• The red fraction fsu can be sped up.
• The blue fraction fstatic can’t be changed.

• Initially, the task takes T seconds to complete.
• T = f Tsu + (1-f) Tstatic

AMDAHL’S LAW

f 1-f

Tbefore

Before

Speedup

Tsu Tstatic

AMDAHL’S LAW

f 1-f

Tbefore

Before

Speedup

Tsu = f Tbefore Tstatic = (1-f)Tbefore

S f 1-f

Tafter

After

Speedup

Tsu_after = Tsu / S = f Tbefore / S Tstatic

Soverall =
Tbefore

Tafter
=

Tbefore

(f
S) Tbefore + (1 − f)Tbefore

=
1

f
S + 1 − f

• Always focus on improving the longest-running
part first.

• Even a huge improvement in a small component
will give modest gains.

WHAT WE CAN LEARN FROM AMDAHL’S LAW

Reduce the OoO Logic Power by 10%

CASE STUDY: DEC ALPHA 21264

Functional Unit Power Fraction
Caches 16.1%
Out-of-Order Issue Logic 19.3%
Memory Management Unit 8.6%

Floating Point Execution Unit 10.8%

Integer Execution Unit 10.8%
Clock Tree 34.4%

Data from: Wattch: A Framework for Architectural-Level Power Analysis and Optimizations

P =
1

0.193
1.1 + 1 − 0.193

≈ 1.01786

Gives a 1.8% overall power reduction! That’s nothing!

Concurrency is great! We can do so many things!!

But what’s the downside…?

1. How much speedup can we get from it?

2. How hard is it to write parallel programs?

CHALLENGES TO CONCURRENCY

Consider two threads with a shared global variable: int count = 0

 

count could end up with a final value of 1 or 2. How?

CONCURRENCY PROBLEM: DATA RACES

Thread 1:

void main(){
 count += 1;
}

Thread 2:

void main(){
 count += 1;
}

Consider two threads with a shared global variable: int count = 0

 

CONCURRENCY PROBLEM: DATA RACES

Thread 1:

void thread_fn(){

 mov $0x8049a1c, %edi

 mov (%edi), %eax

 add $0x1, %eax

 mov %eax, (%edi)

}

Thread 2:

void thread_fn(){

 mov $0x8049a1c, %edi

 mov (%edi), %eax

 add $0x1, %eax

 mov %eax, (%edi)

}

Assuming “count” is
in memory location
0x8049a1c

count could end up with a final value of 1 or 2. How?

These instructions could be interleaved in any way.

DATA RACE EXAMPLE

Thread 1 Thread 2
mov (%edi), %eax

add $0x1, %eax

mov %eax, ($edi)

mov (%edi), %eax

add $0x1, %eax

mov %eax, (%edi)

Time
Thread 1 Thread 2
mov (%edi), %eax

mov (%edi), %eax

add $0x1, %eax

mov %eax, (%edi)

add $0x1, %eax

mov %eax, (%edi)

Final value of count: 2 Final value of count: 1

Assuming “count” is
in memory location
pointed to by %edi

• Thread scheduling is non-deterministic

– There is no guarantee that any thread will go first or last

or not be interrupted at any point

• If different threads write to the same variable

– The final value of the variable is also non-deterministic

– This is a data race

DATA RACE EXPLANATION

Consider three threads with a shared global variable: int count = 0

What are the possible values of count?

CHECK YOUR UNDERSTANDING: DATA RACES
WITH MULTIPLE THREADS

Thread 1:

void main(){
 count += 2;
}

Thread 2:

void main(){
 count -= 2;
}

Thread 3:

void main(){
 count += 3;
}

Consider three threads with a shared global variable: int count = 0

What are the possible values of count?	 	 -2, 0, 1, 2, 3, 5

How are you supposed to reason about this?! 
Need mechanisms for sharing memory.

CHECK YOUR UNDERSTANDING: DATA RACES
WITH MULTIPLE THREADS

Thread 1:

void main(){
 count += 2;
}

Thread 2:

void main(){
 count -= 2;
}

Thread 3:

void main(){
 count += 3;
}

• Two or more things are happening at the same time
• It’s not clear which will run when
• The result will be different depending on execution

order
• Result becomes indeterminate (non-deterministic)

• Data race
– Two or more threads access shared memory at the same time  

and at least one modifies it

RACE CONDITION

• Code that interacts with a shared resource must not be
executed concurrently

• Part of code that accesses a shared resource is a Critical
Section

– In other words, code that would lead to a data race
– May be multiple, unrelated critical sections for multiple shared resources

• Critical sections need to be addressed for correctness
– Races can be avoided by never overlapping multiple critical sections
– We must execute critical sections “atomically” (all or none)

CRITICAL SECTION

Critical section occurs when shared memory is accessed
#include <stdio.h>

#include <pthread.h>

 
static volatile int counter = 0;

static const int LOOPS = 1e7;

void* mythread(void* arg) {

 printf("%s: begin\n", (char*)arg);

 for (int i=0; i<LOOPS; i++) {

 counter++;

 }

 printf("%s: done\n", (char*)arg);

 return NULL;

}

int main(int argc, char* argv[]) {

 pthread_t p1, p2;

 printf("main: begin (counter = %d)\n",
counter);

 pthread_create(&p1, NULL, mythread, "A");

 pthread_create(&p2, NULL, mythread, "B");

 // wait for threads to finish

 pthread_join(p1, NULL);

 pthread_join(p2, NULL);

 printf("main: done with both (counter = %d,
goal was %d)\n", counter, 2*LOOPS);

 return 0;

}

67

Example: Where is the critical section?
#include <stdio.h>

#include <pthread.h>

static volatile char* person1;

static volatile char* person2;

static const int LOOPS = 1e4;

void* mythread(void* arg) {

 printf("%s: begin\n", (char*)arg);

 int i;

 for (i=0; i<LOOPS; i++) {

 // swap

 volatile char* tmp = person1;

 person1 = person2;

 person2 = tmp;

 }

 printf("%s: done\n", (char*)arg);

 return NULL;

}

int main(int argc, char* argv[]) {

 pthread_t p1, p2;

 person1 = "Jack";

 person2 = "Jill";

 printf("main: begin (%s, %s)\n",

 person1, person2);

 pthread_create(&p1, NULL, mythread,
"A");

 pthread_create(&p2, NULL, mythread,
"B");

 // wait for threads to finish

 pthread_join(p1, NULL);

 pthread_join(p2, NULL);

 printf("main: end (%s, %s)\n",

 person1, person2);

}

Buggy concurrent swap. What can go wrong?
#include <stdio.h>

#include <pthread.h>

static volatile char* person1;

static volatile char* person2;

static const int LOOPS = 1e4;

void* mythread(void* arg) {

 printf("%s: begin\n", (char*)arg);

 int i;

 for (i=0; i<LOOPS; i++) {

 // swap

 volatile char* tmp = person1;

 person1 = person2;

 person2 = tmp;

 }

 printf("%s: done\n", (char*)arg);

 return NULL;

}

int main(int argc, char* argv[]) {

 pthread_t p1, p2;

 person1 = "Jack";

 person2 = "Jill";

 printf("main: begin (%s, %s)\n",

 person1, person2);

 pthread_create(&p1, NULL, mythread,
"A");

 pthread_create(&p2, NULL, mythread,
"B");

 // wait for threads to finish

 pthread_join(p1, NULL);

 pthread_join(p2, NULL);

 printf("main: end (%s, %s)\n",

 person1, person2);

}

Buggy concurrent swap. What can go wrong?
#include <stdio.h>

#include <pthread.h>

static volatile char* person1;

static volatile char* person2;

static const int LOOPS = 1e4;

void* mythread(void* arg) {

 printf("%s: begin\n", (char*)arg);

 int i;

 for (i=0; i<LOOPS; i++) {

 // swap

 volatile char* tmp = person1;

 person1 = person2;

 person2 = tmp;

 }

 printf("%s: done\n", (char*)arg);

 return NULL;

}

int main(int argc, char* argv[]) {

 pthread_t p1, p2;

 person1 = "Jack";

 person2 = "Jill";

 printf("main: begin (%s, %s)\n",

 person1, person2);

 pthread_create(&p1, NULL, mythread,
"A");

 pthread_create(&p2, NULL, mythread,
"B");

 // wait for threads to finish

 pthread_join(p1, NULL);

 pthread_join(p2, NULL);

 printf("main: end (%s, %s)\n",

 person1, person2);

}

For a brief period in time:

person1: “Jill”

person2: “Jill”

Example: Is there a problem here?
#include <stdio.h>

#include <pthread.h>

 
static volatile int sum_amount = 2;

static const int LOOPS = 1e7;

void* mythread(void* arg) {

 int counter = 0;

 printf("%s: begin\n", (char*)arg);

 for (int i=0; i<LOOPS; i++) {

 counter += sum_amount;

 }

 printf("%s: done %d\n", (char*)arg, 
 counter);

 return NULL;

}

int main(int argc, char* argv[]) {

 pthread_t p1, p2;

 printf("main: begin\n");

 pthread_create(&p1, NULL, mythread, "A");

 pthread_create(&p2, NULL, mythread, "B");

 // wait for threads to finish

 pthread_join(p1, NULL);

 pthread_join(p2, NULL);

 printf("main: done\n");

 return 0;

}

71

Check your understanding. Is there a problem here?
#include <stdio.h>

#include <pthread.h>

 
static volatile int sum_amount = 2;

static const int LOOPS = 1e7;

void* mythread(void* arg) {

 int counter = 0;

 printf("%s: begin\n", (char*)arg);

 for (int i=0; i<LOOPS; i++) {

 counter += sum_amount;

 }

 printf("%s: done %d\n", (char*)arg, 
 counter);

 return NULL;

}

int main(int argc, char* argv[]) {

 pthread_t p1, p2;

 printf("main: begin\n");

 pthread_create(&p1, NULL, mythread, "A");

 pthread_create(&p2, NULL, mythread, "B");

 // wait for threads to finish

 pthread_join(p1, NULL);

 pthread_join(p2, NULL);

 printf("main: done\n");

 return 0;

}

72

This code will work! 

All threads only read from
shared memory.

If at least one wrote to
shared memory, it would be
a problem.

We MUST stop data races from occurring in our programs.

1. No two processes may simultaneously be in their critical
sections.

2. Processes outside of critical sections should have no impact.

3. No assumptions should be made about number of cores,
speed of cores, or scheduler choices.

SOLUTION REQUIREMENTS

• Locks are the simplest mutual exclusion primitive
– Represent a resource that can be reserved and freed 

• Acquire/lock:	

– Used before a critical section to reserve the resource
– If the lock is free (unlocked), then lock it and proceed.
– If the lock is already taken (someone else called acquire/lock), 

then wait until it’s free before proceeding.

• Release/unlock:

– Used at the end of a critical section to free the resource
– Only the thread holding the lock can release it
– Allows one waiting (or future) thread to acquire the lock

LOCKS (ALSO KNOWN AS A MUTEX)

Lock

• Think about locking a bathroom

door
• Our virtual lock works as follows:

– Anyone can lock or unlock 
(there is no “key”).

– Trying to enter (lock) if the lock is already-
locked will cause you to wait until it’s
unlocked.

TWO DIFFERENT METAPHORS & ETYMOLOGY

Token

• Holding the token gives 

you permission to do something.

• There is only one token.

• Thus, you:

1. Try to acquire the token (“lock”).
You have to wait your turn if
someone else is holding it.

2. When done, release the token/
lock.

• The token represents exclusive
access to a shared resource or a
critical section.

Locks prevent data races
#include <stdio.h>

#include <pthread.h>

 
static volatile int counter = 0;

static const int LOOPS = 1e7;

static pthread_mutex_t lock;

void* mythread(void* arg) {

 printf("%s: begin\n", (char*)arg);

 for (int i=0; i<LOOPS; i++) { 
 pthread_mutex_lock(&lock);

 counter++;

 pthread_mutex_unlock(&lock);

 }

 printf("%s: done\n", (char*)arg);

 return NULL;

}

int main(int argc, char* argv[]) {

 pthread_t p1, p2;

 pthread_mutex_init(&lock, 0);

 printf("main: begin (counter = %d)\n",
counter);

 pthread_create(&p1, NULL, mythread, "A");

 pthread_create(&p2, NULL, mythread, "B");

 // wait for threads to finish

 pthread_join(p1, NULL);

 pthread_join(p2, NULL);

 printf("main: done with both (counter = %d,
goal was %d)\n", counter, 2*LOOPS);

 return 0;

}

76

1. Approach for single-core machines: disable interrupts

void lock() {

 disable_interrupts();

}

void unlock() {

 enable_interrupts();

}

77

• Disable interrupts to prevent preemption
during critical section

• Scheduler can’t run if the OS never takes
control

• Also stops data races in interrupt handlers

• Problems

• Doesn’t work on multicore machines

• Bad Idea to let processes disable the OS

• Process could freeze the entire computer

• Might screw up timing for interrupt handling

2. Straightforward approach: lock variable with loads/stores

// wait for lock released
while (lock != 0);
// lock == 0 now (unlocked)

// set lock
lock = 1;

 // access shared resource ...
 // sequential execution!

// release lock
lock = 0;

78

Initialization:

boolean lock = false;

Is this going to
work though?

Race condition on lock variable

Thread 1

while (lock != 0);

lock = 1;
// critical section

lock = 0;

79

Thread 2

while (lock != 0);

lock = 1;

// critical section
lock = 0;

Race condition on lock variable

80

Thread 1

while (lock != 0);

lock = 1;
// critical
section

lock = 0;

Thread 2

while (lock != 0);

lock = 1;

// critical section
lock = 0;

• Thread 2 finds lock is
not set before Thread
1 sets it 

• Both threads believe
they acquired and set
the lock!

Race condition on lock variable

81

Thread 1

while (lock != 0);

lock = 1;
// critical
section

lock = 0;

Thread 2

while (lock != 0);

lock = 1;

// critical section
lock = 0;

• Lock is released and
available while
Thread 2 is in
critical section!

2. Straightforward approach: lock variable with loads/stores

while(locklock != 0);

locklock = 1;

// wait for lock released
while (lock != 0);
// lock == 0 now (unlocked)

// set lock
lock = 1;

locklock = 0;

 // access shared resource ...

// release lock
lock = 0;

82

Initialization:

boolean lock = false;
boolean locklock =
false;

2. Straightforward approach: lock variable with loads/stores

while(locklock != 0);

locklock = 1;

// wait for lock released
while (lock != 0);
// lock == 0 now (unlocked)

// set lock
lock = 1;

locklock = 0;

 // access shared resource ...

// release lock
lock = 0;

83

Initialization:

boolean lock = false;
boolean locklock =
false;

• This is not going to work…

• Problem: the lock itself is a
shared resource!

2. Algorithmic approach: Peterson’s Algorithm

• There are indeed several algorithmic approaches to create a lock!

• See textbook (or other sources) for Peterson’s Solution for two
threads

• Advantages:

• Algorithm, so it works on any platform no matter the hardware

• Disadvantages:

• Solution for N threads gets complicated

• Performance is slow

84

3. Hardware approach: atomic instructions

• Atomic instructions perform operations on memory in one
uninterruptable instruction

• Guarantees that all parts of the instruction occur before the next instruction

• In multicore, guarantees that entire access to memory is serialized

• Commonly read, modify, and write in a single instruction

85

Atomic Instruction: Exchange

• Example atomic_exchange

int atomic_exchange(int* pointer, int new_value) {
 int old_value = *pointer; // fetch old value from memory
 *pointer = new_value; // write new value to memory
 return old_value; // return old value
}

• atomic_exchange(destptr, newval)

• Write a new value to memory, and return the old one

• Also known as test-and-set when operating on boolean data

• x86-64 instruction: lock; xchg

86

pseudocode for the instruction: remember, this is actually in hardware NOT C

Atomic Instruction: Compare And Swap

• Example atomic_compare_and_swap (remember, this is pseudocode for hardware) 

bool atomic_compare_and_swap (int* pointer, int expected_value, int
new_value) {  
 int actual_value = *pointer;
 if (actual_value == expected_value) {
 *pointer = new_value;
 return true;

 }
 return false;
}

• atomic_compare_and_swap(destptr, oldval, newval)

• x86-64 instruction: lock; cmpxchg
• Generalization of exchange

• Exchange(ptr, new) -> CompareAndSwap(ptr, *ptr, new)

87

Sequential memory consistency

• Memory barrier

• Guarantees that all load/stores before this line of code are completed 

before any load/stores after this line of code are started

• Comes in software (compiler orders things) and hardware (processor

orders things) forms

• Both are necessary for correct execution!

• C wrappers for atomics allow you to specify a memory barrier

• Atomic Load/Store C-wrappers

• Guarantee sequential consistency

• Remember: memory could be reordered by compiler or processor!

88

Spinlock implementation

typedef struct {

 int flag; // 0 indicates that mutex is available, 1 that it is held

} lock_t;  

void mutex_init(lock_t* mutex) {

 mutex->flag = 0; // lock starts available

}

void mutex_acquire(lock_t* mutex) {

 while (atomic_exchange(&(mutex->flag), 1) == 1); // spin-wait until available

}

void mutex_release(lock_t* mutex) {

 atomic_store(&(mutex->flag), 0); // make lock available

}

89

