
CS 310 Stack Lab

Spring 2020

1 Introduction

In the last lab, we wrote a function called printChar that printed a single character to the terminal. Having a function to
print a character is much better than setting up the registers and calling the BIOS for every character we print. Still, it’s
tedious to print messages one character at a time. In this lab, we will write some functions that can print longer messages
without manually calling printChar for each character.

Function calls rely on a very simple data structure called a stack to keep track of who called them. The stack is like a
trail of bread crumbs that the program can use to figure out where it should return to. The stack allows you to call the same
function from many different places in your program, and it always knows how to get back to where it was called from when
it returns.

The stack functions like a stack of plates. Every time we call a function, we put a new plate on the stack. The plate has
written on it the address of the next instruction after the function call.

main:

0x100 mov ax,6

0x102 mov bx,2

0x104 call add2nums

loop:

0x106 jmp loop

add2nums:

0x108 add ax,bx

0x10a call check sum

0x10c ret

check sum:

0x10e cmp ax,8

0x110 jne sum wrong

0x112 mov ax,1

0x114 ret

sum wrong:

0x116 mov ax,1

0x118 ret

0x106 Return address pushed by the call to add2nums

0x10c Return address pushed by the call to check sum

When the program gets to address 0x114 in check sum and it needs to return, the ret instruction will remove the address
on the top of the stack (0x10c) and continue executing instructions at that address. That is the first instruction after the
call.

2 Saving Registers

We can also use the stack to temporarily save the contents of the CPU registers in a function so we don’t clobber them with
local variables. The push and pop instructions can be used to add one number to the top of the stack.

1

printChar:

push ax ; Save AX on the stack

push bx ; Save BX on the stack

; Set up the registers for a BIOS call to print

mov ah, 0x0e ; Write to terminal command

xor bh,bh ; Page 0

mov bl,7 ; Foreground black

mov al,’N’ ; Write an ’N’ to the screen

int 16 ; Call the BIOS!

pop bx ; Remove AX and BX in reverse order

pop ax

ret

Ret Addr Return address pushed by the call to printChar

AX Caller’s AX
SP after push BX BX Caller’s BX

3 Passing Parameters on the Stack

Below is an adaptation of the putChar function that takes its parameter on the stack, not in a register. Your job is to type
this function in to emu8086 and call it from main to print a string. In order to call this function, you need to:

1. push that character you want to print.

2. call putChar

3. Clean up the stack after putChar returns, for example add sp,2

;

; Stack frame diagram for putChar:

;

; |-----------------------|

; | Character to print |

; |-----------------------|

; | Return address |

; |-----------------------|

; | Caller’s BP | <- BP

; |-----------------------|

; | Caller’s AX |

; |-----------------------|

; | Caller’s BX | <- SP

; |-----------------------|

;

putChar:

push bp ; Save the caller’s BP

mov bp,sp ; Point BP to our stack frame

push ax ; Save AX on the stack

push bx ; Save BX on the stack

; Set up the registers for a BIOS call to print

mov ah, 0x0e ; Write to terminal command

xor bh,bh ; Page 0

mov bl,7 ; Foreground black

mov al,[bp+4]; Get character to print from the stack

int 16 ; Call the BIOS!

pop bx ; Remove AX and BX in reverse order

pop ax

pop bp

ret

2

3.1 Stack Frame Practice

int putChar(int c){

Draw the stack frame of this
function below

Write the instructions needed to
call this function in assembly.
Pass the value in AX as int c

Write the prologue of this func-
tion and get the variable int c

into AX

int printString(char *s){
int i = 0;

Draw the stack frame of this
function below

Write the instructions needed to
call this function in assembly.
Pass the value in AX as char *s

Write the prologue of this func-
tion and get the variable char

*s into SI. Initialize i to 0.

int drawDot(int x, int y);

Draw the stack frame of this
function below

Write the instructions needed to
call this function in assembly.
Pass x = 10, y = 10

Write the prologue of this func-
tion and get the variable int y

into AX and int x into BX.

3

int drawRect(int x0, int y0, int w, int h);

int currX, currY;

Draw the stack frame of this
function below

Write the instructions needed to
call this function in assembly.
Pass x0 = 10, y0 = 10, w = 20,
h = 10

Write the prologue of this func-
tion and get the variable int x0

into AX and int y0 into BX.
Initialize currX and currY to x0

and y0 respectively.

int plotLine(int x0, int y0, int x1, int y1){
int dx = x1 - x0;

int dy = y1 - y0;

int D = 2 * dy - dx;

Draw the stack frame of this
function below

Write the instructions needed to
call this function in assembly.
Pass x0 = 10, y0 = 10, x1 =

20, y1 = 30

Write the prologue of this func-
tion and get the variable int x0

into AX and int y0 into BX.

4

4 Bresenham’s Line Algorithm

The following pseudocode implements Bresenham’s line algorithm to draw lines with a slope between 0 and 1. Implement
this in assembly, passing parameters on the stack.

function plotLine(x0, x1, y0, y1)
dx← x1 − x0

dy ← y1 − y0
D ← 2dy − dx
y ← y0
for x from x0 to x1 do

plot(x,y)
if D > 0 then

y ← y + 1
D ← D − 2dx

end if
D ← D + 2dy

end for
end function

5

