CS 163 Discrete Math http://neilklingensmith.com/teaching/loyola/cs163/ Fall 2023

Practice Midterm

Dimense Democratication

Date: October 16, 2023

Desimal Democratic

Name:

1. (24 points) Convert the following numbers in decimal representation to binary and hexadecimal:

	Binary Representation	Hexadecimal Representation
29	1 1101	0x1D
127	111 1111	0x7F
84	101 0100	0x54
32	10 0000	0x20

- 2. (20 points) Compute the following modulus (Hint: first convert to binary.)
 - (a) (5 points) 29 mod 8 $\,$

Solution: $29 = 1 \ 1101_2$ $1 \ 1101_2 \ \text{MOD} \ 8 = 101_2 = 5_{10}$

(b) (5 points) 127 MOD 16

Solution: $127 = 111 \ 1111_2$ $111 \ 1111_2 \ \text{MOD} \ 16 = 1111_2 = 15_{10}$

(c) $(5 \text{ points}) 84 \mod 4$

Solution: $84 = 0101 \ 0100_2$ $0101 \ 0100_2 \ \text{mod} \ 4 = 00_2 = 0_{10}$

(d) (5 points) 32 MOD 16

Solution: $32 = 10\ 0000_2$ $10\ 0000_2\ \text{MOD}\ 16 = 0_2 = 0_{10}$

- 3. (50 points) Arithmetic on an 16-bit processor. We have a really #!tty 16-bit processor that only has an adder and a bit shifter. It has no ability to perform multiplication or division. We need to compute $(5011_{10} 2899_{10})/4$ using only addition and bit shifts.
 - (a) (15 points) First calculate the 2's complement representation of -2899. In the box below, write out the binary representation of +2899, then take its two's complement. Also convert the binary to hex in the boxes at right.

- 4. (20 points) Suppose we have some binary number X that consists of three bits: $X_2X_1X_0$. Write a logic function that is true under the following conditions:
 - (a) (5 points) X contains only one 1.

Solution: $(X_2 \& \overline{X_1} \& \overline{X_0}) \mid (\overline{X_2} \& X_1 \& \overline{X_0}) \mid (\overline{X_2} \& \overline{X_1} \& X_0)$ A slightly simpler version: $\overline{X_2} \& (X_1 \oplus X_0) \mid (X_2 \& \overline{X_1} \& \overline{X_0})$

(b) (5 points) X contains an even number of 1s.

Solution: $\overline{X_2 \oplus X_1 \oplus X_0}$

(c) (5 points) X when interpreted as an unsigned binary number is less than 3.

Solution: $\overline{X_2} \& \overline{(X_1 \& X_0)}$

(d) (5 points) X when interpreted as a signed (2's complement) number is less than -1.

Solution: $X_2 \& \overline{(X_1 \& X_0)}$

5. (20 points) Implement the four logic functions from Question 4 using gates.

6. (40 points) Implement a switching network that has two data inputs (A and B), two data outputs (C and D), and a control input S. When S = 1, the network is in passthrough mode, and C should equal A, and D should equal B. If S equals 0, the network is in crossing mode, and C should equal B and D should equal A.