
CS/Math 240: Introduction to Discrete Mathematics Fall 2015

Reading 8 : Recursion

Instructors: Beck Hasti, Gautam Prakriya

8.1 Recursion

Recursion in computer science and mathematics refers to the idea of describing the solution of a
problem in terms of solutions to easier instances of the same problem. This concept applies to
definitions as well as to algorithms or programs. For example, inductive definitions can be thought
of as a recursive definitions since they define more complex instances of a concept in terms of
simpler instances. For programs, recursion means that we call the program from itself, but on a
smaller input. Such a function call a known as a recursive call.

It is key that each recursive call to the program is a call that uses a smaller input, so that some
call is eventually made with an input for which the problem solved by the program is trivial and for
which the program can return the answer right away without any additional recursive calls. This
causes an end to the chain of recursive calls, and the recursively called instances of the program
terminate, one by one, with the instance called last returning first. If the recursive calls don’t use
smaller inputs, the program could keep calling itself forever and never terminate.

The next three sections give examples of recursive algorithms for some problems. The goal of
these examples is to ease you into thinking in terms of recursion.

8.1.1 Fibonacci Numbers

We can view the definition of the n-th Fibonacci number as a recursive definition. The constructor
rule says that Fn = Fn−1 + Fn−2. In recursion terms, the “smaller instances” in the recursive
definition of the n-th Fibonacci number are Fibonacci numbers with a lower index than n. The
foundation rules F1 = 1 and F2 = 1 correspond to the base cases where we don’t need another
application of recursion.

We can turn the recursive definition of the n-th Fibonacci number into a recursive program
that calculates the n-th Fibonacci number. Before we do so (and before we write any program),
we should have a specification available. In this case, our program receives a positive integer, n, as
input, and returns the n-th Fibonacci number. We give the program as a Function called Fib.

Algorithm Fib(n)

Input: n - A positive integer
Output: Fn - The n-th Fibonacci number

(1) if n = 1 or n = 2 then return 1
(2)

(3) else return Fib(n-1) + Fib(n-2)
(4)

1



8.1 Recursion 8.1.2 Greatest Common Divisor

8.1.2 Greatest Common Divisor

We can also rewrite the GCD algorithm using recursion. Observe that the behavior of the function
GCD is the same as the behavior of iterative GCD algorithm from the previous reading.

Algorithm GCD(a, b)

Input: a, b - positive integers
Output: gcd(a, b) - their greatest common divisor

(1) if a = b then return a
(2)

(3) if a < b then return GCD(a, b− a)
(4)

(5) if a > b then return GCD(a− b, b)
(6)

8.1.3 Grade School Multiplication Algorithm

Finally, we rewrite the grade school multiplication algorithm from last reading using recursion. We
offer some intuition behind the recursive description.

Write b = 2q + r where q = bb/2c and r ∈ {0, 1}. Then r corresponds to the last bit in the
binary representation of b, and q is formed by the all the remaining bits. To get q out of the binary
representation of b, we just “cut off” the last bit from the binary representation of b. Thus, it
is possible to obtain binary representations of q and r from the binary representation of b. Also
notice that to multiply a number x by 2, we just append a zero after the last bit of the binary
representation of x.

If b = 2q + r, we can write ab = a(2q + r) = 2(aq) + ar. This reduces the multiplication ab into
three multiplications, namely ar, aq, and multiplying aq by 2. Let’s argue that these multiplication
problems are easier so as to give ourselves some confidence that we don’t just keep increasing the
number of multiplications without end.

First, multiplication by r is easy because r is either 0 or 1. In the former case, ar = 0, and in the
latter case, ar = a, so we don’t need an additional recursive call here. Second, the multiplication
aq is a multiplication of a by a number that is smaller than b, so this is a multiplication problem
with a smaller input than the original problem. Finally, we saw in the previous paragraph how
to multiply by 2 in binary: We just append a zero at the end of the binary representation of the
number we multiply by 2 and return right away without another recursive call. Thus, we have
reduced the problem of multiplying a and b into three easier multiplication problems.

Now that we have some intuition, let’s write down the algorithm. It is not an exact transcript
of our intuition, but is close. It also allows for multiplication by zero.

2



8.2 Correctness of Recursive Programs

Algorithm MULT(a,b)

Input: a, b - integers
Output: ab - their product

(1) if b = 0 then return 0
(2)

(3) if b is even then return 2 · MULT(a, bb/2c)
(4)

(5) else return 2 · MULT(a, bb/2c) + a
(6)

8.2 Correctness of Recursive Programs

When we prove correctness, we show that the program meets its specification, i.e., a correct program
satisfies the following:

For all valid inputs, the program produces the correct output.

We prove the correctness of recursive programs via induction. The breakup of correctness into
partial correctness and termination remains when proving the correctness of recursive programs.

1. Partial correctness: For partial correctness, we need to show that for all valid inputs x , if the
program terminates then the progam returns the correct output for x. To establish partial
correctness for recursive programs, it is sufficient to establish the following:

For all valid inputs x:

• All recursive calls (if any) made by the program on input x are on valid inputs.

• Assuming these recursive calls return the correct output and assuming the program
terminates, the program returns the correct output on x.

Here the assumption that the program terminates might seem redundant because we already as-
sume that the recursive calls return something (which means the recursive calls terminate). But
the assumption is necessary to handle other structures like while loops in the program. However
most recursive programs we will see in this course won’t have such additional structures.

The structure of our proof of partial correctness will mimic the structure of the recursive
program under consideration. That is, we first prove that the program returns the correct
output on the simplest inputs (think of this as the base case in a proof by induction). After
which we prove (a) the inputs to recursive calls are valid and (b) If the recursive calls return
the correct output, then the program returns the correct output (think of this as the inductive
step in a proof by induction).

Now, if the program terminates on an input then the chain of recursive calls it makes will end
at the simplest input. Our proof of partial correctness would then imply that the program
returns the correct output (by induction).

2. Termination: For recursive programs, termination means that the chain of recursive calls
eventually ends. Termination is proved by induction on some quantity (that depends on the
inputs) which decreases with each recursive call.

We now give the correctness proofs of some of the recursive algorithms we presented in the
previous section.

3



8.2 Correctness of Recursive Programs 8.2.1 Greatest Common Divisor

8.2.1 Greatest Common Divisor

We restate the recursive algorithm for computing greatest common divisors and then prove its
correctness.

Algorithm GCD(a, b)

Input: a, b ∈ N, a > 0, b > 0
Output: gcd(a, b)

(1) if a = b then return a
(2)

(3) if a < b then return GCD(a, b− a)
(4)

(5) if a > b then return GCD(a− b, b)
(6)

Let’s start with partial correctness. The structure of the proof will follow the structure of the
algorithm. We will have one case for each of the lines in the description of the algorithm. Let a, b
be a valid input.

Case 1: a = b. In this case, the algorithm returns a, and this is the correct answer because
gcd(a, b) = gcd(a, a) = a.

Case 2: a < b. In this case gcd(a, b) = gcd(a, b−a) by a result from the previous reading. Since
b > a, a and b − a are both positive integers, a, b − a is a valid input. That is the input to the
recursive call is valid. Our assumption that the recursive calls return the correct output implies
that the call GCD(a,b-a) returns gcd(a, b − a) = gcd(a, b), and this is what the program returns.
Thus, we get partial correctness in this case as well.

Case 3: a > b. The argument for this case is similar to the one for Case 2, except the roles of
a and b are interchanged.

This completes the proof of partial correctness.

Now let’s argue termination. We give a proof by induction on the quantity a + b. (We choose
of a + b because it decreases in each recursive call)

Base case: a, b ∈ N since (a, b) is valid The smallest a + b can be is 2. In that case a = b = 1,
so the algorithm returns. This proves the base case.

For the inductive step, assume that when a+b ≤ n and (a, b) is valid, the algorithm terminates.
Case 1: a = b. In this case, a = b, so the algorithm returns right away and terminates.
Case 2: a 6= b. The algorithm makes a recursive call on a valid input a′, b′ , and a′ + b′ < a + b

(one of a or b is reduced by at least 1 to obtain a′ and b′). The recursive call halts by the induction
hypothesis, and the algorithm returns terminates right after this.

The completes the proof that the algorithm terminates, and also concludes the proof of correct-
ness of the algorithm.

When we prove partial correctness, we don’t argue that the program actually halts at some
point. We can take that as an assumption since we only prove the implication “if the program
halts, the returned value is correct”. For this reason, we can prove partial correctness of a program
that doesn’t always halt. For example, if our specification were to allow a = −2 , b = −3, the chain
of recursive calls would go on for ever (why?). But in this case, our assunmption that the recursive
call returns the return the correct output would still imply that the algorithm returns the correct
output. So partial correctness still holds. However, this doesn’t tell us that the algorithm returns
something on (−2,−3), since that would require that it terminates.

4



8.2 Correctness of Recursive Programs 8.2.2 Grade School Multiplication Algorithm

Finally, we remark that the kind of recursion used to describe function GCD is called tail recur-
sion. In tail recursion, we only make a recursive call at the very end before we return, and return
the value returned by the recursive call.

8.2.2 Grade School Multiplication Algorithm

Now we prove correctness of the recursive version of the grade school multiplication algorithm.
This becomes more complicated because we need some more computation in order to produce the
result after the recursive calls return.

Recall that we wrote b = 2q + r where q = bb/2c and r ∈ {0, 1} is the remainder after dividing
b by 2. Now multiply both sides by a to get ab = 2aq + ar. The right-hand side expresses the
multiplication ab as three simpler multiplication problems and one addition.

Algorithm MULT(a,b)

Input: a, b ∈ N
Output: a · b

(1) if b = 0 then return 0
(2)

(3) if b is even then return 2 · MULT(a, bb/2c)
(4)

(5) else return 2 · MULT(a, bb/2c) + a
(6)

First let’s prove partial correctness of this algorithm. Like in the previous proof, the proof
structure follows the structure of the algorithm. Let (a, b) be a valid input.

Case 1: b = 0. When b = 0, ab = 0 as well, and the program returns zero correctly in this case.
Case 2: b 6= 0. In this case there are two subcases depending on the parity of b.
Case 2.1: b is even. Then

ab = 2 · a · b
2

= 2 ·
(
a ·

⌊
b

2

⌋)
. (8.1)

Note that a and bb/2c are valid inputs, so MULT(a, bb/2c) returns a · bb/2c by our assumption on
recursive calls. We multiply the returned value by 2 and return the result, which is ab by (8.1).

Case 2.2: b is odd. Then

ab = a ·
(

2

⌊
b

2

⌋
+ 1

)
= 2 ·

(
a ·

⌊
b

2

⌋)
+ a. (8.2)

Note that a and bb/2c are valid inputs, so MULT(a, bb/2c) returns a · bb/2c by our assumption on
recursive calls. We multiply the returned value by 2, add a to the result, and return the result of
the addition, which is ab by (8.2).

This completes the proof of partial correctness.

We prove termination by strong induction on b (b decreases with each recursive call). When
b = 0, our program returns right away, which proves the base case. For the induction step, assume
the algorithm terminates whenever the second argument is at most b. Now consider a call to MULT

with b+1 as the second argument. The recursive call to MULT happens with b(b+1)/2c in this case.
Note that b(b + 1)/2c ≤ b, so the induction hypothesis implies that the recursive call terminates.
After receiving the return value from the recursive call, our call to MULT with b + 1 performs a few
mathematical operations and then returns as well. This completes the proof of termination.

5



8.2 Correctness of Recursive Programs 8.2.3 Towers of Hanoi

We end with another example of a recursive algorithm, the proof of correctness of which is left
to the reader.

8.2.3 Towers of Hanoi

In the towers of Hanoi problem, we have three pegs labeled A, B and C, and n disks of increasing
size which are stacked on peg A with the largest disk on the bottom and the smallest disk on top.
See the initial setup for n = 4 in the first frame in Figure 8.1. The goal is to bring all disks from
peg A to peg C. In each step, we can move one disk from one peg to another peg, but we can never
move a larger disk on top of a smaller disk. See Figure 8.1 for a sequence of moves that achieves
this when n = 4.

We come up with a recursive procedure that tells us what sequence of moves to make. We want
to reduce the problem into subproblems involving fewer disks. A possible subproblem could be
moving the top n− 1 disks from peg A to peg B using only legal moves. Assuming this is possible,
we can now move the largest disk from peg A to peg C, and then solve another subproblem involving
n − 1 disks to move the n − 1 disks from peg B to peg C. The sequence of moves in Figure 8.1
achieves this for n = 4. Frames 1–8 show how to get the first three disks from peg A to peg B.
Going from frame 8 to frame 9 moves the largest disk in its place. Finally, frames 9–16 show how
to move all the remaining disks from peg B to their final destination.

We describe the strategy as function TOWERS. Observe that what’s happening is that we are
building a solution to a larger problem out of solutions to smaller versions of the problem.

Algorithm TOWERS(n,A,B,C)

Input: n ∈ N, n disks in order on top of peg A, pegs B and C
Output: Sequence of moves that brings those disks to the top of C, using B as intermediate

peg.
(1) if n = 0 then return
(2)

(3) else return TOWERS(n-1,A,C,B)

Move top disk of A to C
TOWERS(n-1,B,A,C)

(4)

We leave the full proof of correctness to th reader. For partial correctness, we argue we don’t
violate any of the conditions for validity of moves. The key is that when we look at the subproblem
of moving the top n − 1 disks, the largest disk stays put and we can move any disk on top of it
without risking that the move is invalid. The proof of termination is by induction on the number
of disks.

6



8.2 Correctness of Recursive Programs 8.2.3 Towers of Hanoi

1

A B C

2

A B C

3

A B C

4

A B C

5

A B C

6

A B C

7

A B C

8

A B C

9

A B C

10

A B C

11

A B C

12

A B C

13

A B C

14

A B C

15

A B C

16

A B C

Figure 8.1: Solving the towers of Hanoi problem with 4 disks.

7


