Homework 4

Due: October 1, 2019

Name:

1. (25 points) Two's complement representation
(a) (5 points) Compute the one's complement of the following binary number. Also convert the binary to hex in the box at right.

Original	0	0	0	0	1	1	0	1	0 x 0 B
One's	1	1	1	1	0	0	1	0	0xF2
Complement									

(b) (5 points) Copy your binary one's complement number from above and add 1 to it. Convert the result from binary to hex in the box at right.

(c) (5 points) Is the original number from part 1 (a) positive or negative? How do you know?

Solution: Positive because sign bit is zero.
(d) (5 points) Is the two's complement number from part 1 (b) positive or negative? How do you know?

Solution: Negative because sign bit is one.
(e) (5 points) What is the decimal representation of the two's complement number from 1(b) (including the sign)? Hint: what is the decimal representation of the original number? What happens to the sign when you take the two's complement?

Solution: -13
2. (15 points) More hex addition.
(a) (10 points) Fill in your binary two's complement result from part $1(\mathrm{~b})$ and add it to $0 \mathrm{x} 10=16_{10}$.

| 16_{10} | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| + | | |
| + | 0 0 0 1 0 0 0 0 | 0 x 10 |
| | 1 1 1 0 0 1 1 | Result
 from 1(b) |

(b) (5 points) Is this the result that you expected? Explain.

Solution: Yes this is the expected result because $16-13=3$

