CS 163 Discrete Math http://neilklingensmith.com/teaching/loyola/cs163/

Homework 4

Fall 2019

Due: October 1, 2019

Name:

- 1. (25 points) Two's complement representation
 - (a) (5 points) Compute the **one's** complement of the following binary number. Also convert the binary to hex in the box at right.

Original Number	0	0	0	0	1	1	0	1	0x0B
One's Complement	1	1	1	1	0	0	1	0	0xF2

(b) (5 points) Copy your binary one's complement number from above and add 1 to it. Convert the result from binary to hex in the box at right.

One's Complement	1	1	1	1	0	0	1	0	
+								1	
Two's Complement	1	1	1	1	0	0	1	1	0xF3

(c) (5 points) Is the original number from part 1(a) positive or negative? How do you know?

Solution: Positive because sign bit is zero.

(d) (5 points) Is the two's complement number from part 1(b) positive or negative? How do you know?

Solution: Negative because sign bit is one.

(e) (5 points) What is the decimal representation of the two's complement number from 1(b) (including the sign)? Hint: what is the decimal representation of the original number? What happens to the sign when you take the two's complement?

Solution: -13

- 2. (15 points) More hex addition.
 - (a) (10 points) Fill in your binary two's complement result from part 1(b) and add it to $0x10 = 16_{10}$.

(b) (5 points) Is this the result that you expected? Explain.

Solution: Yes this is the expected result because 16 - 13 = 3