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ABSTRACT
Wepresent PANDA, a data acquisition technique for energy-constrained
sensor nodes that reduces the energy per operation required to sam-
ple and preprocess analog sensor data. PANDA takes advantage of
the energy consumption patterns of commodity microcontrollers
by sampling input signals in short bursts followed by long periods
of inactivity. This approach reduces the overhead of repetitively
transitioning the CPU and analog components in and out of low-
power sleep states. This nonuniformly-spaced input data is then
fed to a nonuniform FFT algorithm that computes the frequency
spectrum. We show that the spectrum computed with the nonuni-
form FFT is very close to the spectrum that would be computed
from uniformly sampled data preprocessed with a conventional FFT.
The output of the nonuniform FFT can be filtered or postprocessed
with conventional frequency domain analysis techniques, and a
uniformly resampled output can be constructed with the conven-
tional inverse FFT. We compare the energy consumption patterns of
burst-mode sampling to those of conventional uniform sampling in
several real sensor nodes. We demonstrate that for reasonably sized
input datasets, burst mode sampling and postprocessing consumes
more than 17% less energy than conventional uniform sampling,
including the additional computations required to compute the
nonuniform DFT.
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1 INTRODUCTION
Energy consumption in mobile and IoT devices is a primary con-
cern because power sources—batteries, energy harvesting devices,
etc—are limited in capacity. In ultra-low power sensor systems such
as SNUPI [7], MICA2 [8], Amulet [16], and others [2, 18–20], power
consumed by analog-to-digital conversion circuitry is a primary
contributor to battery drain. As microcontrollers become increas-
ingly complex, adding features such as direct memory access, mem-
ory protection, etc., optimizing sleep state power consumption will
become more important because wake state power draw will be
higher. With PANDA, we aim to reduce the overall power consump-
tion of battery-powered sensing devices by increasing the fraction
of time the system spends in a low-power sleep state. PANDA tar-
gets applications that use mid-range microcontrollers which are
sensitive to power consumption and also have sufficient resources
to perform nontrivial computations. This mid-range segment, rep-
resented by 32-bit devices such as the ARM Cortex M line, is being
invested in heavily by many microcontroller manufacturers, and it
represents a large and growing portion of microcontroller sales.

To extend the battery life of sensor nodes, we seek to reduce
the energy per operation of sampling and preprocessing our input
sensor data. To do so, we put the CPU and analog components into
sleep mode for as much time as our application will allow.

However, sleeping the analog components between sample ac-
quisitions poses a problem for real time systems because the process
of putting each component to sleep and waking it up consumes
a significant amount of time and energy. We have found that for
many microcontrollers, waking the ADC from sleep mode takes
roughly the same amount of time and energy as acquiring a sin-
gle sample. When sampling medium and high-frequency signals,
the amount of time and energy consumed in powering down the
analog subsystem between samples contributes significantly to the
overall energy consumption of the analog to digital conversion
process [27].

But sleep-wake overhead is not the only inefficiency in ADC
sampling. In applications that need to sample multiple analog input
channels at high frequency, the overhead of switching between
channels is often a dominant contributor to the overall sampling
period. This can significantly reduce the maximum sampling fre-
quency of the ADC. Multi-channel ADCs, which are common in
mid-range microcontrollers, often use an analog multiplexer to di-
rect signals from the input channels to the conversion circuitry (see
Figure 1) rather than having an independent conversion circuitry
for each channel. On many microcontrollers, the analog input mux
is slow to switch input channels. Applications that need to sample
many analog input channels could use PANDA to reduce the over-
head of input channel switching by sampling each input channel
in bursts before switching to the next input channel. This would
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Figure 1: Schematic of a typical multi-channel ADC circuit.
A single data conversion circuit performs digitization of all
analog input data. An analog multiplexor selects a single
analog input for conversion. Changing the selected analog
input is a long-latency operation that reduces the system
performance.

reduce the overhead of switching between analog input channels,
and it can significantly increase the maximum sampling frequency
we can achieve. Table 1 gives an overview of ADC performance
characteristics for a few popular microcontrollers. The rightmost
column of the table shows the latency of switching ADC input
channels between samples relative to sampling the same channel
sequentially.

With PANDA, we seek to reduce energy and time wasted by
repeatedly sleeping and waking a sensor node between samples.
Figure 2 shows a comparison of (a) conventional sampling per-
formed at uniform time intervals and (b) and (c) the nonuniform
paradigm used by PANDA. Numbered circles represent samples
collected by the microcontroller. Rather than waking the CPU and
ADC for a single conversion at uniform time intervals, we propose
collecting samples in bursts. After waking the microcontroller from
sleep, several samples will be collected from the ADC in rapid suc-
cession before returning to the sleep state. Sampling in this way
reduces the number of times we need to transition the CPU in and
out of its low-power sleep state.

In Figure 2 (a), using uniform sampling, we transition the CPU
in and out of sleep a total of six times, using overhead energy each
time. In Figure 2 (b), we collect samples in bursts of two. Here, we
collect the same number of samples in the same amount of time, but
we only have to transition the CPU in and out of sleep three times.
This reduces the amount of energy spent on overhead by half. In
Figure 2 (c), we further reduce the energy overhead by collecting
samples in bursts of three, transitioning in and out of sleep only
twice and saving more energy still.

Unlike other burst-mode data acquisition techniques, PANDApro-
vides meaningful frequency domain analysis tools including fre-
quency spectrum analysis, linear filtering, and signal reconstruction.
The availability of frequency domain signal processing techniques
makes PANDA a practical tool for real-time signal processing ap-
plications like energy metering, biometric (ECG, EEG) monitoring,
and so forth.

Intuitively, we think of burst-mode sampling as capturing infor-
mation about a signal’s value and its first few derivatives. In a short
burst of four samples, for example, we can record the signal’s value
and its first three derivatives. Knowledge of the signal’s first few
derivatives at a moment in time gives us information about how

the signal will evolve in the near future. This makes it possible for
us to skip samples after the burst, which saves energy.

Unfortunately, direct Fourier analysis techniques—FFT, DFT,
etc.— are not useful for interpolation of nonuniformly sampled
signals because the derivatives of a signal are linearly dependent.
Fourier techniques are successful at interpolating signals because
the basis of sinusoids they use are orthogonal. To solve this problem,
we use other methods of interpolating and resampling the signal
before applying Fourier methods.

Under the burst sampling paradigm, we can amortize the over-
head of bringing the microcontroller out of its sleep state over
more than one ADC sample, allowing us to save time and energy.
However, the data produced by PANDA is not sampled at uniform
intervals, and therefore cannot be fed directly into conventional
signal processing algorithms such as the FFT.

To deal with this problem, we piggyback off of work that has been
done in the signal processing community in the area of nonuniform
sampling and reconstruction. We adapt the existing work, which
was initially developed for use in RADAR systems, to work on mi-
crocontrollers. We then evaluate the timing implications both for
ADC sampling and data processing, showing that we can achieve
more than 17% reduction in sampling energy compared to uni-
form sample spacing, even when accounting for the additional pro-
cessing overhead required to compute the frequency spectrum. To
our knowledge, PANDA is the first algorithm to adapt nonuniform
DFT techniques for online use in a resource-constrained runtime
environment.
The key contributions of this work are as follows:

• We adapt an existing nonuniform DFT algorithm to work
on online in a resource-constrained runtime environment.

• We compare the energy used by PANDA to conventional
uniformly spaced sampling, demonstrating that burst-mode
sampling can reduce the energy per sampling operation
by more than 17%, including additional computation over-
head.

• We describe the limitations of frequency domain analysis on
burst mode sampled data that we encountered in resource
constrained real-time environments.

2 BACKGROUND
The energy required to perform analog to digital conversions in
commodity microcontrollers varies by architecture, but it can ac-
count for a significant portion of energy budget. For low-power
applications, the MCU will enter a sleep state, powering down un-
necessary components whenever possible, in order to conserve
energy. Most microcontrollers support several different levels of
sleep, where “deeper” sleep modes correspond to powering down
more functions or peripherals of the microcontroller. When enter-
ing deep sleep states, the sensor node must typically reconfigure
clock generation and distribution circuitry such as the microcon-
troller’s phase-locked loop (PLL) and clock tree, a process which
consumes time and energy. So each time the sensor node enters or
returns from a sleep state, it must spend time and energy to do so.

For nodes like temperature sensors that take data samples at
extremely low frequency, the energy consumed by sleeping and
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MCU Number of Channels Same Channel Alternate Channels Slowdown
Atmel AVR XMEGA 16 0.25µs 3.5µs 14x
Freescale Kenetis K50-72MHz 2 1.25µs 10µs 8x
Freescale ColdFire 24 5µs 15.95µs 3.19x
TI ARM Cortex M4 24 1µs 3µs 3x

Table 1: A comparison ofADC sampling time among several popular commoditymicrocontrollers. Same channel is the amount
of time it takes to sample the same ADC channel sequentially. Alternate channel is the amount of time it takes to sample
different channels sequentially. Slowdown is the relative performance penalty of alternating channels compared to sampling
the same channel sequentially.
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Figure 2: A comparison of (a) conventional sampling per-
formed at uniform time intervals to (b) and (c) nonuni-
form burst sampling used by PANDA. In this example, we
amortize the overhead of sleeping andwaking themicrocon-
troller over three samples by collecting data in bursts.

waking the CPU and peripherals is insignificant. In higher fre-
quency applications, on the other hand, which require sampling
real-time signals at rates of more than few hundred Hertz, the
overhead of repetitively sleeping and waking the microcontroller
represents a large fraction of the node’s overall energy consump-
tion. For extremely low-power applications, this overhead can be
comparable to the amount of energy used by the communications
interface [27].

Figure 3(a) shows the power consumed by a 32-bit ColdFire
microcontroller’s ADC and CPU during a single ADC sample. After
waking from its sleep state, the MCU spends a relatively short
amount of time—roughly 14 µs—sampling its ADC. Once the ADC
has been sampled, the CPU and ADC return to a sleep state to

conserve power, a process that takes more than 100 µs . For a single
sample, most of the energy is consumed during the power down
phase, while components in the MCU return to their sleep state.

In contrast, Figure 3(b) shows the power consumed by the Cold-
Fire during a burst of four sample acquisitions. In burst mode, the
overhead of powering down the CPU and ADC can be amortized
over several sample acquisitions. This is the key observation that
allows PANDA to conserve power.

Figures 3 (c) and (d) show the power consumed by an 8-bit Atmel
microcontroller in 1- and 4-sample bursts. Although it is clearly far
more efficient in terms of its sleep overhead power consumption,
the Atmel microcontroller exhibits similar tendencies.

By sampling our signal of interest in in high-frequency bursts fol-
lowed by extended periods of deep sleep, we can effectively gather
the same information about our target signal while conserving
energy by reducing the overhead required to repetitively wake and
sleep theMCU. Figure 4 shows how the overhead energy per sample
decreases for increasing sample burst lengths. This approach has
been used in many systems [9], but until now, only rudimentary
signal processing techniques could be applied1.

Once the data is collected, we want to be able to analyze it using
frequency-domain techniques. For example, we may wish to apply
a linear filter to the data and then resample it uniformly in time to
be analyzed further. To do so, we apply a matrix transform opera-
tor, much the same as the matrix formulation of the conventional
Discrete Fourier Transform.

2.1 Related Work
There has been a lot of study on reconstruction of signals from
nonuniform samples. Analysis of nonuniformly sampled signals
was first investigated by Yen [35] in 1956. Early work in the area
was concerned with analyzing RADAR return signals. Since that
time, techniques have been developed to analyze nonuniformly
sampled signals in astronomy [22], medicine [21], image process-
ing [5, 25, 34], and others. Laguna and Moody studied the power
spectral density of unevenly sampled data using least square analy-
sis and modeled the uneven sampling as uniform sampling plus a
stationary random deviation. They applied this technique to analyze
the Heart Rate Signals [21]. Theoretical contributions have been
made to improve the quality of frequency spectrum estimates and
reconstruction techniques [24]. Jenq talks about perfect reconstruc-
tion of digital spectrum from the nonuniformly sampled signals

1For example, burst mode sampling is commonly used to capture the value of a
DC signal in additive white Gaussian noise by computing the mean value of many
successive samples before returning the node to sleep
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Figure 3: Power consumed by the CPU and ADC to acquire
(a) a single ADC sample and (b) a burst of four samples
in succession. After waking from sleep, the CPU and ADC
power up, acquire samples, and return to sleep. The area
highlighted in gray shows the time during which the micro-
controller is doing useful work. For the rest of the time—a
short powerup beforehand and a long powerdown sequence
afterward—represent overhead during which time the MCU
is consuming power but not performing any useful work.
By amortizing this overhead over bursts of multiple ADC
samples, PANDA reduces the overall energy consumption of
ADC sampling.
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Figure 4: Total energy and energy overhead per sample for
different lengths of sample burst. As bursts get longer, we
can amortize the overhead of waking and sleeping the mi-
crocontroller over more samples. In this application, we see
diminishing returns above 4 samples per burst.

where the timing offsets of each sampling instance are known and
have a periodic structure [17].

Butzer and Hinsen also offer some interesting insight reconstruc-
tion of bounded signals from pseudo-periodic, irregularly spaced
samples [4]. Moinch and Boche’s work on the non-equidistant sam-
pling for bounded signals considers sampling patterns that are
made of zeros sine-type functions and analyze the local and global
convergence behavior of the sampling series. They also discuss the
influence of oversampling on the global approximation behavior
and the convergence speed of the sampling series [28]. However,
these techniques have generally been applied only when no other
course of action is practical. That is, people do not generally sample
signals nonuniformly when other options are available because less
is known about the mathematical properties of spectral analysis
and reconstruction of nonuniformly sampled signals. Nontradi-
tional data acquisition techniques such as compressive sensing [10]
have also been applied in sensor networks to reduce power con-
sumption. [33] used this technique for scheduling the measurement
for the estimation of soil moisture. The Sparse Fast Fourier Trans-
form [14, 15] is another technique for reducing the computational
overhead of computing the most prominent harmonics of a signal.

Energy profiling of embedded systems has been widely stud-
ied topic. Zhai studied nonuniform sampling of sensors on smart-
phones [36], using similar techniques to decrease energy consump-
tion by clustering sensor sampling. Tiwari et al. [31] talks about
power modeling of embedded processor to characterize power bud-
get of different software running on a processor. Cycle accurate
energy estimation technique has been presented in [32]. Character-
izing energy split up in the overhead is out of the scope of this work
and can be done as a future work using the techniques mentioned
above. Our work focuses on finding the overall energy overhead of
each sample and thus we went ahead measured energy used by the
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Algorithm Computation Complexity Stability
Marvasti [25] O(N 2) Low
Dutt [11] O(NloдN + Nloд(1/ϵ)) High
Andersen [1] O(N 2) Moderate
Greengard [13] O(NloдN + Nloд(1/ϵ)) High
Press [12, 29] O(N log(N )) High

Table 2: A comparison of nonuniformDFT algorithms. Here,
N is the size of the input dataset.

entire board. Since this is a straight forward method, we have not
come up with any estimation model.

3 ALGORITHM OVERVIEW
Broadly speaking, there are two classes of algorithms for computing
the nonuniform DFT:

(1) Direct computation methods use a matrix-vector multi-
plication, similar to the matrix form of the standard DFT:

f = As

where s is the signal of interest (a vector) sampled at nonuni-
form time intervals, A is a matrix whose rows are complex
sinusoids sampled at the same times as s , and f is the com-
puted frequency spectrum, also a vector. The advantage of
this method is that it is a convenient and intuitive repre-
sentation of the frequency spectrum. Its main disadvantage
is that it tends to amplify noise in the input signal. Since
the rows (and columns) of A are not orthogonal, frequency
components from different harmonics of the input signal s
can be confused. This effect becomes more pronounced as
the sampling nonuniformity increases. For that reason, it is
not suitable for burst mode sampling, which relies on highly
nonuniform sampling patterns to conserve energy in the
ADC.

(2) Interpolation and resampling methods use some form
of interpolation—for example, polynomial or spline interpolation—
of the input data to construct a continuous-time model of
the signal of interest. This continuous time model is then
resampled at uniform intervals, and the uniformly sampled
signal is fed in to a standard FFT. The interpolation and re-
sampling approach has the advantage of being more stable
for highly nonuniform sample times. A disadvantage of this
approach is that it is less computationally efficient because
it must solve two matrix-vector problems, compared to one
in the direct method.

The fastest and most stable NUFFT algorithm we are aware of
in the literature is one published by Greengard and Lee [13] for
processing RADAR signals. Their algorithm, designed to run on
PCs, uses a technique they call fast Gaussian gridding to interpolate
between nonuniformly spaced samples. The idea is to replace each
sample—conventionally represented as a Dirac delta function—with
a Gaussian bump. The continuous time signal is then represented
as an expansion Gaussians:

f (t) =
N−1∑
n=0

ane
−(t−tn )2/σ 2

n (1)

In the Gaussian gridding approach, Greengard and Lee find the
an and σn that best match the samples and then interpolate uni-
formly spaced samples using the basis functions. Normally, compu-
tation of those parameters would require solving anN×N system of
equation, using O(N 3) operations. Fast Gaussian gridding reduces
that time by making the simplifying assumption that each Gaussian
bump only affects signal values in its immediate neighborhood. This
optimization produces a bandedmatrix which is approximately zero
everywhere except on the diagonal and one or a few off-diagonal
rows. Fast Gaussian gridding achieves higher performance by only
considering a small subset of the basis functions for each point in
the interpolation.

We have modified the Greengard and Lee algorithm for use in
real-time applications in resource-constrained environments:

• We have separated the initialization phase of the algorithm
into its own function, called once at startup.

• We pre-compute the values of the exponentials inside the
sum of Equation 1 at compile time. This is possible because,
in burst-mode sampling, we know the times tn at which
samples will be taken.

These optimizations reduce the runtime of fast Gaussian gridding
by roughly 40%. At runtime, we only need to solve the banded
matrix-vector system of equations to interpolate between sample
bursts followed by a conventional FFT.

4 EVALUATION
4.1 Experiment Setup
In this section, we study how burst-mode sampling affects energy
consumption in sensor nodes. Compared to conventional uniform
sampling, burst-mode sampling in PANDA changes the way we
collect and process sensor data. We consider energy used by data
acquisition and preprocessing, roughly dividing the tasks into:

(1) Sampling energy required to operate the sensors and ana-
log to digital conversion hardware.

(2) Computation energy required to compute the frequency
spectrum of the sampled data.

For both operations, we compare the amount of energy used in
conventional sampling to that used by PANDA. We then discuss
how PANDA can be applied in several example applications. For
each application, we will compare the energy spent sampling the
waveform with PANDA to the energy spent with conventional
sampling. We will also compare the amount of CPU time it takes to
preprocess the data with PANDA to the amount of time spent with
the FFT.

The applications we study in this work are:

Electric Power Meter
In this application, our goal is to measure the electric power

consumed by some household appliance in real time. We use a
current transformer to measure AC electric current and a resistor
to measure AC voltage. An 8-bit Atmel ATmega328 microcontroller



e-Energy ’18, June 12–15, 2018, Karlsruhe, Germany Neil Klingensmith and Suman Banerjee

samples the analog output of the sensors with its analog to digi-
tal converter and computes the power by multiplying the 60 Hz
components of the voltage and current waveforms together.

P60 = V60I60

Between samples, the microcontroller shuts down the analog
signal conditioning circuitry and powers down the microcontroller
and peripherals. The microcontroller offers various sleep modes
and we chose SLEEP_MODE_PWR_DOWN and it was operated at
maximum voltage of 5 volts. This mode shuts down all the gener-
ated clocks and allows operations of asynchronously mode only.
The controller wakes up when watchdog times out, configured for a
4 seconds timeout and samples the input the signal. For the purpose
of finding energy overhead per sample, we sampled 1, 2, 4, 8, and
16 samples every time the controller wakes up. We recorded the
voltage vs time measurements across the resistor and computed the
current through the circuit. Also, the rise and fall of voltage level at
the GPIO port was also recorded and was used as the reference to
mark the energy overhead. The recorded waveform was exported
and used matlab to compute the area under the curve. We use fre-
quency domain analysis (FFT) to compute the 60 Hz components
of the waveforms of interest.

Water Flow Sensor
Thewater flow sensor tracks the volume ofwater passing through

a piece of industrial water treatment equipment. The water sensor
hardware outputs a square voltage waveform with a frequency
proportional to the water flow rate. A 32-bit ARM microcontroller
records the frequency generated by the flow sensor and converts it
to flow rate.

To compress the data, our microcontroller transforms the com-
puted flow rate into the frequency domain and discards low-amplitude
harmonics.

Figure 5 shows the average amount of energy used per sample
in different burst lengths, with bursts of length 1 corresponding to
uniform sampling. Clearly, burst mode sampling reduces the energy
required to sample the signal of interest in both applications. We
will study the energy requirements of computing the frequency
spectrum from burst mode samples in later sections.

Figure 6 shows a breakdown of the energy used in sampling for
the power meter application using various sample burst lengths. We
have divided the energy consumed into (1) sampling energy and (2)
overhead energy. Sampling energy is the actual energy required to
run the ADC, CPU, and analog circuitry to acquire the samples. This
is the energy blocked out in gray in Figure 3. Overhead energy is the
energy required to power up and power down the microcontroller
before and after gathering samples.

This data was gathered by setting one of the microcontroller’s
GPIO lines to a 1 during the actual sampling process and setting
it to a 0 just before sleep. We then gathered power consumption
traces with an oscilloscope and integrated the traces numerically.

The overhead energy remains roughly constant for all burst
lengths we studied because the energy required to sleep and wake
the microcontroller is a constant, independent of the amount of
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work performed. The sampling energy grows roughly linearly with
the number of sample acquired.

As we increase the number of samples gathered per burst in
Figure 6, we can see that the overhead energy becomes a smaller
fraction of the total. Using this fact, we can amortize the energy
required to sleep and wake the CPU over more samples.
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4.2 A Simple Demonstration
Here, we will demonstrate that existing algorithms can correctly
compute the frequency spectrum of nonuniformly sampled data.
We also show that the computed spectrum can be fed directly into a
standard inverse FFT library routine to yield a time-domain signal
resampled at uniform intervals. This is important if we intend to
apply standard frequency-domain analysis or filtering techniques
to the nonuniformly sampled data.

Figure 7 shows a simple demonstration of how PANDA operates
on a synthetic dataset. Part (a) shows the original waveform, a
clipped sine wave, before any transformations have been applied.
We imagine that this is the analog signal of interest that is input to
our system. Its frequency spectrum F (ω) is depicted in part (b).

Part (c) shows fAA(t), the signal after it has been passed through
an analog low-pass antialias filter. This is the signal that would
actually be sampled by our ADC, with high frequency components
removed. The spectrum of fAA(t) is shown in part (d).

Part (e) shows the samples of fAA(t) that would be taken by our
ADC in burst mode. In this example, we use a burst length of two
samples. Each burst of samples is followed by a period of inactivity
equal in length to the burst. We then compute the nonuniform DFT
of the burst-mode sampled signal, shown in part (f). This should be
the same as (or very close to) the frequency spectrumwewould have
gotten had we sampled fAA(t) uniformly and computed the FFT
with standard methods. Figure 7 (h) shows the error between the
PANDA spectrum of fAA(t) and the spectrum computed with the
FFT. Stable algorithms should keep this error as small as possible.

At this stage, the data gathered using PANDA is in the same
format as if we had collected samples at uniform time intervals and
transformed it using the conventional FFT. We could apply standard
frequency domain filtering techniques to the data in Figure 7 (f).
To reconstruct the time-domain samples at uniform intervals from
the filtered data, we can apply the standard inverse FFT, shown in
part (h).

We assume in this example that our objective is to apply some
frequency domain analysis to the nonuniformly sampled signal.
If, on the other hand, all we want is to resample a nonuniformly
sampled signal at uniform time intervals, there are several direct
techniques for doing so [4, 23, 26].

Requirements for Sampling Functions Nonuniformly
Marvasti et. al. provide an analysis of the requirements for

nonuniformly sampled functions, whichwewill not repeat here [25].
They show that as long as the average sampling rate satisfies the
Nyquist criterion, the continuous signal can be reconstructed with-
out loss of information.

Time Complexity of PANDA
In this section, we compare the amount of time (and CPU cycles)

required to compute the frequency spectrum of burst-mode sampled
data gathered with PANDA. The purpose of this analysis is to be
sure that the energy we save with burst-mode sampling is not
wasted in extra computation time on the microcontroller. There
are several efficient algorithms know for computing the frequency
spectrum of nonuniformly sampled data (see Table 2, the fastest of

which use O(NloдN + Nloд(1/ϵ)) operations for N time-domain
samples and precision of ϵ .

Figure 8 shows runtime measurements taken on an ARM CPU
of a standard FFT algorithm (KISS FFT), an in-place DFT algorithm,
and PANDA’s nonuniform FFT algorithm.

4.3 Runtime Profiling
In this section, we compare the runtime PANDA with the standard
FFT, analyzing real data collected from a large deployment of water
flow and quality sensors. We analyze roughly 9000 data points
collected at 5-minute intervals over a time span of several months.
Using the raw samples as ground truth, we created burst-mode
sampled data by intermittently saving and discarding data points
from the original sample database. We then use the data collection
platform (which includes an ARM CPU) to process the data with
the PANDA NFFT algorithm and compare the results to uniformly
spaced sampling mode.

Figure 8 compares the execution time of two library DFT al-
gorithms with PANDA. These experiments were done on a ARM
microcontroller, which is a commodity MCU used in our water flow
sensor application.

(1) KISS FFT [3] is a (relatively) simple implementation of the
FFT designed to run on PCs with floating point support. KISS
is an out-of-place implementation of the FFT, meaning that
it requires two separate buffers (one input and one output)
to compute the frequency spectrum.

(2) In-Place FFT [30] is an in-place DFT implementation tar-
geted at low-end embedded systems. Since it is an in-place
implementation, it requires roughly half the data storage as
KISS because the input and output buffers are the same.

(3) PANDA NUFFT, to compute the frequency spectrum of a
nonuniformly sampled input dataset.

Surprisingly, the PANDA NUFFT runs faster on this CPU for 210
samples than for 29 because of the behavior of the microcontroller’s
data cache. We did not optimize our code for the microcontroller’s
cache configuration. The KISS FFT implementation takes advan-
tages of optimizations which reduces the computational complexity
to O(n log(n)). The in-place DFT has a higher computational com-
plexity than the FFT [6], because it cannot take advantage of FFT
optimizations which require separate memory buffers to perform
decimation in time. For the remainder of this paper, we will compare
PANDA to the KISS FFT implementation because it can achieve a
shorter runtime which will translate into less energy consumed by
the CPU during the computation of the frequency spectrum.

4.4 An Alternative: Downsampling Without
Bursts

Do we actually gain anything by sampling in bursts at lower fre-
quencies? What would happen if, instead of sampling in bursts at
lower frequencies, we just use uniform sampling at lower frequen-
cies? We want to be sure that burst mode sampling actually gives
improved resolution in the frequency domain.

Figure 9 shows how frequency resolution (on they axis) depends
on sampling intervals in our water quality dataset, with bigger
numbers corresponding to worse resolution. The original dataset
has samples taken at five minute intervals. To learn how frequency
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Figure 7: A demonstration of sampling a time-domain signal at nonuniform time intervals, computing its frequency spectrum,
and reconstructing the original waveform using a standard inverse FFT.

domain resolution depends on sampling frequency, the original
data was downsampled, which was possible because the original
sampling frequency was much higher than the Nyquist frequency
of the underlying signal.

Downsampling was done in two modes: uniform in which the
dataset was downsampled uniformly in time, and burst in which

the dataset was downsampled in burst mode. Burst mode downsam-
pling on they axis is annotated as (number of points retained):(number
of points discarded). For example, 2:4 burst downsampling means
that two data points from the original dataset were retained, and
the following four were discarded. Between groups, bars with the
same colors correspond to samples taken at the same frequency in
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Figure 8: Runtime comparison between In-Place and Out-of-
Place FFT on an ARM Microcontroller. The x-axis is the log
of the dataset length, and they y-axis is the runtime of each
algorithm. The jog in PANDA’s runtime is caused by L1 data
cache misses for smaller sample lengths.

uniform sampling mode or burst sampling mode. For example, the
blue bar corresponds to bursts of length two (keep two samples,
throw out two samples) occurring at the same frequency as uniform
downsampling by a factor of four (keep one sample, throw out three
samples). Both blue bars represent sampling of the original signal
at a period of 5*4 = 20 minutes. In burst mode downsampling, we
take two samples every 20 minutes, and in uniform downsampling,
we take one sample every 20 minutes. We want to confirm that by
retaining more data in burst mode, we actually get better resolution
in the frequency domain.

As we would expect, resolution in the frequency domain gets
worse (coarser) as we downsample the data more. However, in burst
mode, it is clear that resolution in the frequency domain degrades
more slowly, despite the fact that the time interval between bursts
is the same as the corresponding time interval between uniform
samples in the other bar cluster. In terms of information content
in the frequency domain, there is value in taking more than one
sample in a bursts. If we take more than one sample in a burst, we
can extract more information about the frequency domain content

Furthermore, for comparable amounts of retained data, Figure
9 shows that we get comparable resolution in the frequency do-
main. For example, 2:6 burst mode sampling retains 25% of the
data from the original dataset (two samples kept, six discarded). Its
resolution in the frequency domain is comparable to 4× uniform
downsampling, which also retains 25% of the original data.

4.5 Energy Profiling
We have demonstrated that burst-mode data acquisition, when
paired with the PANDA NUFFT algorithm, can achieve similar
resolution in the frequency domain as uniform data acquisition.
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Figure 9: Frequency domain resolution as a function of sam-
pling frequency for uniform downsampling and burst mode
downsampling. Small is good, big is bad.
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trum computation for the uniformKISS FFT and the PANDA
NUFFT. The x-axis is the dataset size for each algorithm, and
the y-axis is the total energy used to sample and compute the
frequency spectrum. PANDA outperforms the uniform FFT
in terms of energy consumption for data windows larger
than 1024.

The process of sampling in burst mode clearly uses less energy than
the uniform sampling alternative, but the data postprocessing takes
more CPU time, as outlined in Figure 8. When we put all steps of
the process together, how does the overall energy compare between
the two techniques?
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In Place KISS FFT PANDA
0.89 kbytes 1.98 kbytes 38.4 kbytes

Table 3: Code size for each of the three algorithms we evalu-
ated. The NUFFT algorithm used by PANDAuses roughly an
order of magnitude more program memory than the other
uniform FFT implementations.

Using data gathered from our deployment of water quality sen-
sors, we compared data acquisition and postprocessing with the
PANDA algorithm and standard uniform sampling using various
dataset sizes. Runtime profiling and energy measurements were
done on the water quality sensors using historical data that had
been gathered over the course of several months. Results of total
energy consumption for sampling and frequency spectrum compu-
tation are shown in Figure 10.

In the burst-mode sampling used by PANDA, computation en-
ergy is a larger component of total energy consumption than in
uniform sampling mode. In our experiments with the water sensing
platform, PANDA’s burst mode sampling outperform uniform sam-
pling for datasets larger than 1024 samples. We get a 13% reduction
in overall energy per sample for data windows of 4096.

4.6 Memory Requirements
We compiled each of the three algorithms for an ARM microcon-
troller using the Thumb-2 instruction set and the -Os compiler
flag to optimize for size. The code space used by each algorithm is
shown in Table 3. None of the algorithms uses a significant amount
of data memory—the only data memory used is for storing the input
and output buffers. PANDA uses roughly an order of magnitude
more code space than the uniform FFT implementations. This could
be a drawback for low-end microcontrollers with constraints on
code memory. However, with rapid advancements in integration
on new microcontrollers, devices with code memory sizes in the
range of a few megabytes are now commonly available, making
PANDA’s NUFFT implementation feasible.

4.7 Limitations of PANDA
In the right execution environment—one with enough memory and
CPU throughput to support fast Gaussian gridding—PANDA can
reduce the average energy required to sample a signal and compute
its frequency spectrum. On low-end microcontrollers, such as the
Atmel device used in our power meter application, we were not able
to compile the PANDA code because of code size constraints. We
found that on other 8-bit platforms that the fast Gaussian gridding
algorithm performs poorly because of lack of instruction set support.
In particular, PANDA requires native support for integer division
and barrel shift, which are not usually available on low-end 8-bit
platforms.

In PANDA, we assume that the microcontroller’s CPU must be
awake in order for the ADC to take a sample. Some more sophis-
ticated microcontrollers have the ability to trigger ADC conver-
sions without intervention from the CPU and transfer the recorded
value directly to memory. This feature is only available on highly-
integrated devices, which are unlikely to be used in low-power

applications. PANDA is targeted at mid-range devices that are com-
monly used in low-power applications.

5 CONCLUSION
In the previous section, we demonstrated the utility of PANDA by
sampling a signal in burst mode, computing its frequency spec-
trum, and computing the inverse transform to produce a uniformly
resampled signal in the time domain. Using our method, we can
save energy by sampling nonuniformly in the time domain while
still applying standard frequency domain analysis and filtering
techniques.

In our evaluation, we found that a large portion of the energy
used by a sensor is consumed in the process of sampling. For this
reason, we conclude that there is significant opportunity to reduce
the energy consumed in the data acquisition process. However,
in order to gather samples in burst mode, we need to use an al-
ternative method of preprocessing the samples to compute the
frequency spectrum. PANDA’s approach of burst-mode sampling,
therefore, only makes sense if the energy used in preprocessing
the burst-mode data does not overwhelm the savings in the data
acquisition phase. We found that PANDA can have benefits for
common applications with average sized data sets.

We analyzed the energy consumed by PANDA’s nonuniformDFT
algorithm running on a real sensor application using real sensor
data. We found that its runtime (and therefore its energy consump-
tion) is higher than that of the conventional FFT for datasets of less
than 1024 samples. However, for larger data sets, we demonstrated
that PANDA can reduce the energy required to sample a signal and
compute its frequency spectrum by as much as 17%.
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