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ABSTRACT
We present Hermes, a hypervisor for MMU-less microcontrollers.
Hermes enables high-performance bare metal applications to coex-
ist with RTOSes and other less time-critical software on a single
CPU. We experimentally demonstrate that a real-time operating
system scheduler does not always provide deterministic response
times for I/O events, which can cause real-time workloads to be
unschedulable. Hermes solves this problem by adding a layer of
abstraction between the hardware I/O devices and the software
that services them, making I/O transactions truly deterministic.
Virtualization on low-power mobile and embedded systems also
enables some interesting software capabilities like secure execu-
tion of third-party apps, software integrity attestation, and bare
metal performance in a multitasking software environment. These
features otherwise require additional hardware (i.e. multiple CPUs,
hardware TPM, etc) or may not be available at all. In other projects,
we have anecdotally noticed that real time operating systems are
not always able to respond quickly and deterministically enough
to time-sensitive operations, particularly under high I/O load. We
validate this observed timing problem by measuring interrupt la-
tency in an RTOS environment and comparing to an experimental
implementation of Hermes. We find that not only is the interrupt
latency lower in the virtualized environment, but it is also much
more deterministic—a key figure of merit for real-time software
systems. We discuss challenges of implementing a hypervisor on
a CPU with no memory management unit, and we present some
preliminary solutions and workarounds. We go on to explore some
other applications of virtualization to mobile and IoT software.
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1 INTRODUCTION
Modern embedded sensing and mobile applications increasingly
perform diverse functions, including displaying user interfaces,
managing networking, performing real-time data acquisition, and
more. Some even allow third-party code to be downloaded and
run alongside the factory firmware [17]. Such diversity in runtime
requirements poses challenges to software architects, who must
manage the often competing needs of different tasks.

To manage the diverse runtime requirements of embedded soft-
ware, we have developed a lightweight embedded hypervisor we
call Hermes1, targeted to ARM Cortex-M microcontrollers. Other
authors have proposed similar systems for mobile phone environ-
ments, but none that we are aware of on MMU-less processors
[5, 9, 14].

IoT applications are frequently implemented on CPUs without
an MMU in order to save cost and power. While the cost of MMU-
ful Linux-capable processors is going down all the time, energy
considerations (especially for mobile applications) are not likely to
go away.

The problem we set out to solve is one of I/O latency in such a
complex runtime environment. Real-time operating system (RTOS)
scheduling algorithms cannot guarantee deadlines will be met un-
der high I/O load. People usually solve this problem by running
time-critical operations on a separate CPU [13]. For example, high-
frequency signal sampling may be implemented in bare metal code
running on an independent microcontroller while the user interface,
networking, storage, etc. runs on the main device. This approach
has a lot of obvious shortcomings: increased hardware and soft-
ware complexity, power consumption, physical size, verification
difficulty, etc.

Driver-level I/O processing has traditionally been assumed to be
a negligible component of overall response time—an assumption
that was valid 30 years ago as these real-time scheduling algo-
rithms were being developed. At that time, embedded computers
were single-purpose machines that largely performed the same task
repetitively.

But that assumption of single-purposeness is becoming less valid.
Modern microcontrollers are equipped with a diverse range of
peripherals that was unimaginable in the 1980s.Network interfaces,
high-speed data acquisition devices, touchscreens, and more all
have a diverse range of requirements, but they are treated the same
by the RTOS and CPU. Exception management for low-priority I/O

1HypErvisor for Real timeMicrocontrollErS
http://hermes.wings.cs.wisc.edu
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Figure 1: Timeline of (a) high-priority ISR followed by user-
mode I/O processing and (b) low-priority ISR co-occuring
with a high-priority ISR, delaying high-priority user mode
processing.

is always performed before user-mode code can respond to high-
priority events, creating a kind of unintended priority inversion
(depicted in Figure 1). Consequently, response times to latency-
sensitive I/O events are not deterministic, which can result in failure
(see an exploration of this in Section 2).

Conventional wisdom among real-time programmers is that ISRs
should be as short as possible: clear the interrupt, maybe transfer a
few bytes of data, and exit. Userland code should be responsible for
responding to the event. In a crowded software environment with
multiple drivers and tasks competing for CPU time, this program-
ming method has the effect of delaying the actual response of all I/O
events until all ISRs have finished executing. These delays break the
assumptions that underlie real-time scheduling algorithms, which
require the highest-priority task to always run first. Instead, we
are running the driver code associated with low-priority tasks be-
fore the user code for high-priority tasks, and RTOSes do not have
flexibility to change this behavior.

Hermes is a lightweight virtualization platform that lives be-
tween the hardware and the operating system. At its core, Hermes
consists of some initialization code and a single interrupt service
routine that catches and preprocesses all exceptions before dis-
patching them to the operating system. In its role as a mediator of
exception processing, Hermes can allowmultiple operating systems
or bare metal applications to run side-by-side on an MMUless mi-
crocontroller, dispatching exception processing to the appropriate
OS as necessary, much like a hypervisor running on a PC or server.
We see several potential advantages to this software architecture:

(1) Performance. For time-critical applications, Hermes can
provide a thin layer between the software and the hardware.
Real time operating systems (RTOSs) on the other hand,
often come with a lot of overhead in the form of system call
latency for time-critical tasks. This may be unacceptable in
applications where time-critical tasks need to coexist with
other less critical code like networking or user interface
software.

(2) Security. With Hermes, we can allow untrusted third party
code to run in a sandboxed environment that protects mis-
sion critical software from attacks. Hermes, with the as-
sistance of peripherals commonly available on commodity
microcontrollers, can provide a root of trust for guests and
remote agents.

(3) Portability. Hermes can provide a consistent virtual en-
vironment for all higher level software, regardless of the
underlying hardware. This could enable, for example, edge

Software Environment Entropy of Latency
FreeRTOS, Serial Only 0.85
FreeRTOS, Serial + Ping Flood 1.78
Bare Metal Guest, Serial Only 0.27
Bare Metal Guest, Serial + Ping Flood 0.14

Table 1: Entropy of the distributions of latency measure-
ments (distributions shown in Figure 2). Low values of en-
tropy are more deterministic. The bare metal guest running
in Hermes has much more predictable latency than tasks in
FreeRTOS. Under Hermes, latency is still highly determinis-
tic under high I/O load.

computing devices with heterogeneous hardware implemen-
tations to run user apps targeted to a common platform.

A diagram of the Hermes software architecture is shown in
Figure 3. We are implementing Hermes on an ARM Cortex M7 CPU
called the Atmel SAM E70 [6, 7] which has 2 Mbytes of flash and
384 kbytes of RAM. It also includes many advanced features of
the latest ARM microcontrollers such as a floating point unit, a
memory protection unit, separate instruction and data caches, and
many peripherals. We have tested Hermes by running a FreeRTOS
v9.0.0 [2] guest on top of the hypervisor. The contributions made
by this work are the following:

• We measure the response time to interrupts in an RTOS
environment, demonstrating that latencies can be nondeter-
ministic under high I/O load.

• We propose the use of a hypervisor in real time software
environments to ameliorate the determinism problem. The
hypervisor can provide isolation between software tasks,
which can improve timing predictability.

• We develop a rudimentary implementation of the hypervisor,
and we study its performance. We discuss some of the diffi-
culties of implementing a hypervisor on a microcontroller
with no MMU.

2 PROBLEM VALIDATION
Using performance counters on the ARM Cortex M7 CPU, we mea-
sure the ISR-user space latency—the time between beginning of
ISR execution to beginning of userspace data processing. This is
a metric of how long it takes to respond to an I/O event. Ideally,
for time sensitive I/O this time should be short and deterministic,
meaning the same for each I/O event. We find that in the FreeR-
TOS environment, the ISR-user space latency is less deterministic
under high I/O load, as expected. We have also experienced this
problem when developing other systems, but we did not study it as
carefully [12].
Experimental Setup

We measured the ISR-userspace latency for a serial port receive
in FreeRTOS and Hermes. In FreeRTOS, we used an OS queue to
transfer the data from an ISR to a user-mode task. In Hermes, we ran
a FreeRTOS guest alongside a bare metal guest that transferred data
between an ISR and userspace code using a memory buffer. In both
runtime environments, we had two other periodic FreeRTOS tasks
running alongside the latency test. In both cases, we ran the latency
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Figure 2: ISR-userspace latency histograms. Latency is measured as the number of cycles elapsed between executing the serial
port receive ISR and beginning of userspace processing.

test in isolation as well as in the presence of high I/O load (a ping
flood) to test how well each software environment could provide a
deterministic runtime environment. The networking software that
responded to the pings was implemented as a low-priority task in
FreeRTOS for both environments.
FreeRTOS

FreeRTOS is a popular (if not the most popular) real-time operat-
ing system for embedded and IoT computers. It has been ported to
CPUs manufactured by 20+ manufacturers representing every com-
monly used architecture (ARM, x86, etc.). FreeRTOS implements a
rate monotonic scheduler in which each task has a fixed priority,
and the highest priority task that is ready to run is executed first.

According to its development team, “FreeRTOS never performs a
non-deterministic operation, such as walking a linked list, from in-
side a critical section or interrupt.” Traditionally, its set of features—
deterministic rate monotonic scheduler—is thought to provide de-
terministic event response times. This is true for CPU-intensive
tasks, but, as we will see, that assumption of determinism breaks
down under high I/O load.
Results

Figure 2 shows the results of our latency tests. Each subplot
is a histogram of ISR-userspace latencies. Ideally, we would want
these plots to have only one bar—a single response time for every
I/O event. Figure 2 (a) and (b) show latency in FreeRTOS only,
under low and high I/O load respectively. Under high I/O load, the
latency histogram is more spread out because exceptions raised by
unrelated I/O events delay execution of the user mode code in an
unpredictable way. This happens when a serial port exception and
a network port exception occur close in time. Both exceptions must
be processed before the user mode code to handle the serial port
receive can begin executing. We get shorter and more deterministic
response times when the serial port exception occurs in isolation. If
the network port exception occurs near the same time as the serial
port exception, the network port ISR will have to execute before the
CPU can return to user mode, delaying the response time. This is
an inherent disadvantage of running multiple unrelated programs
on a single processor which we are trying to correct with Hermes.

Figure 2 (c) and (d) show the latency of the same I/O operation
running as a bare-metal guest inside Hermes. Determinism is higher

for histograms that are more clustered around a single value and
lower for histograms that are more spread out.
Discussion

The reason that ISR-userspace latency is more deterministic in
Hermes under high I/O load is that by design, Hermes can enable
or disable different interrupt sources depending on which guest is
active. In this test, we disabled the network port exception when
the bare-metal serial port guest was running. This makes it impos-
sible for the network port ISR to interrupt the user-mode code that
handles the serial port receive. Operating systems in general do not
support changing processor state for different threads2, presumably
because I/O transactions are assumed to be the domain of the oper-
ating system and mostly independent of user-mode software. That
assumption was generally valid for early PCs and servers, whose
job was primarily batch-mode processing with very little user in-
teraction. Mobile and IoT devices have completely different set of
requirements: they need to serve as a responsive user interface in
which software works closely with I/O.

Uncertainty in scheduling can create real problems for these
kinds of systems. For instance, if the same timing uncertainty in
Figure 2 were imposed on ADC sampling in an IoT device, it could
cause several decibels of harmonic distortion [3]. It is easy to imag-
ine many situations in which timing errors could result in degraded
system performance on mobile platforms.

We should be clear here that we do not have a full implementa-
tion of I/O prioritization in Hermes. The results in Figure 2 were
obtained by forcing a context switch to the bare metal guest each
time we took a serial port exception. We acknowledge that our
implementation is not scalable, but the results give us some insight
into what is possible with virtualization. Cleaning up the imple-
mentation should not significantly degrade performance of the
hypervisor.

We considered several simpler alternative solutions that could
be implemented in the RTOS to alleviate I/O latency:

(1) Disable interrupts in user-level code. This would allow
us to process the I/O event in userspace without interruption.
It does not solve the problem of ISR-userspace latency, since

2For example, we are not aware of any RTOS that allows the programmer to enable or
disable different drivers while certain threads are running.
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Figure 3: Architecture of the Hermes Hypervisor. The main
component of Hermes, its monolithic exception handler,
intercepts all exceptions before dispatching them to the
guests.

more than one exception may execute sequentially before
user code gets a chance to disable interrupts.

(2) Process I/O events in the ISR. This would allow us to en-
sure that our I/O events are processed in a timely fashion.
This could be an acceptable solution for a single-purpose
bare-metal app with no other tasks running concurrently.
The problem with this approach in an RTOS is that it mo-
nopolizes the CPU during the entire I/O operation, likely
causing other tasks to hang while the I/O event is handled.

(3) Re-prioritize the interrupts.We could use the CPU’s in-
terrupt prioritization circuits to execute the time-critical ISR
first, before other ISRs. This wouldn’t decrease latency in an
RTOS environment because lower priority ISRs will always
execute before the user space code.

None of these solutions is a viable alternative because they can-
not reduce latency while maintaining a responsive runtime envi-
ronment for other concurrent tasks.

3 ARCHITECTURE
In its current implementation, Hermes is a single monolithic in-
terrupt service routine that intercepts all CPU exceptions before
they can be processed by the operating system. Figure 3 shows a
diagram of the interactions between the Hermes hypervisor and its
guests. On boot, the Hermes initialization code sets up the CPU’s
exception table to point to the Hermes ISR. It then launches the
guest operating systems in the ARM CPU’s unprivileged execution
mode3.

3.1 Opportunities
Running a hypervisor on embedded IoT equipment enables some
interesting possibilities for IoT software.
Distributed Processing on a Single Chip

Many embedded hardware designs use a distributed computa-
tion model to separate a complex task into several independent
execution environments. For example, a board might have one net-
work processor, one sampling processor, and a main CPU, each
3Normally, operating system code would run in privileged execution mode, but when
the RTOS is running as a guest inside Hermes, it executes in unprivileged mode.

performing its own specific task independently of the others. This
type of design complicates the hardware and software and likely
drives up the cost, size, and energy requirements of the equipment.
With a hypervisor, we can run all software on a single CPU while
maintaining isolation by running each independent application in
its own VM. CPU and resource allocation can be strictly controlled
by the hypervisor to ensure that deadlines are met. Our preliminary
investigation into I/O latency in Section 2 suggests that we can use
Hermes to isolate low-priority CPU time hogs (like the ping flood)
from the rest of the system.
Security

Authenticating the software on an unattended embedded device
is still an open problem. A few proposed solutions [4, 15] rely on
measuring the timing of some arbitrary computational operation.
The hypervisor may be able to serve as a root of trust for virtualized
applications by implementing a virtualized trusted platformmodule
(vTPM) [1] to be used by underlying software components. It may
be possible to implement a virtual TPM in software using either
ARM TrustZone [16] or an on-chip cryptographic accelerator [10].

3.2 Challenges
Implementing a virtualization environment on a platform with no
hardware support has a unique set of challenges that we will discuss
here.
Compile-Time Guest Setup

Since we are dealing with a system that has no MMU, we are
required to compile all guests with the hypervisor into a single
runtime binary. The practical challenge is that, for symmetric guests
(more than one instance of a single guest OS), we must change the
name of each function and variable in order to avoid linker errors.
This can be mildly annoying because it makes the RTOS code harder
to read. We have written a script to perform this task automatically.
Imprecise Bus Fault Exceptions

The ARM Cortex M line of CPUs throws bus fault exceptions for
accesses to privileged memory regions that are mapped to certain
control registers. Some of these exceptions can be imprecise, mean-
ing that the CPU does not record the exact instruction that caused
the exception. Instead, in response to an imprecise exception, the
CPU will throw a bus fault as soon as possible (in our experience
2-10 instructions past the faulting instruction). This makes the job
of the Hermes exception handler difficult since it does not know
which privileged memory access needs to be emulated. The only
thing we can be sure of is that the faulting instruction occurs earlier
in the instruction stream than where the exception was thrown.

Fortunately for us, the ARM Cortex M7 device on which we
implemented Hermes sometimes records the effective address of
the instruction that caused the bus fault, even if the bus fault is
imprecise4.

We solve the problem of imprecise bus fault exceptions by tracing
back through the instruction stream to look for a privileged instruc-
tion with the correct effective address that is likely to have caused
the imprecise exception. Starting at the address of the instruction

4Contrary to this fact, the ARM documentation indicates that the CPU never records
the effective address of instructions that cause imprecise bus faults. We have either
found an error in the documentation or a bug in the CPU, but this is good since it
works to our advantage.
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that caused the exception, we trace back through the last five in-
structions in order of memory address. We decode each instruction
and compare its effective address to the address that caused the
bus fault. If the instruction’s effective address matches the offend-
ing effective address, then we assume a match and emulate that
instruction.

Clearly, there are some pathological cases that could cause this
approach to fail. So far, we have not encountered any code in a
guest that causes this approach to fail to emulate the guest.
Some Special Register Accesses Don’t Cause Exceptions

Two instructions on the ARM Cortex M7—mrs and msr—which
write and read certain special-purpose registers in the ARM CPU
do not cause privilege violation exceptions when executed by the
guest. These instructions allow access to special CPU registers that
control interrupt priority masking and accesses to the master stack
pointer. The mrs and msr instructions are classified as privileged
instructions, but when they are executed by code running in unpriv-
ileged mode, they fail silently: the register write is not committed,
and the processor continues normal execution.

The problem is that if a guest OS tries to modify the processor
state with one of these instructions, that state modification cannot
be registered by Hermes since it does not cause an exception. The
privileged instruction will complete like a nop instruction without
modifying the CPU state. Critical CPU state changes like disabling
interrupts will not work as intended.

We circumvent this problem by patching the OS kernel, adding an
undefined instruction immediately following an mrs or msr. When
the hypervisor encounters an undefined instruction exception, it
will search backward in the instruction stream for an mrs or msr
instruction. If we run an unpatched kernel inside the hypervisor, it
will crash because the intended CPU state modifications will not
happen as intended.

4 I/O VIRTUALIZATION
The main goal of the Hermes hypervisor is to provide a thinner
layer between hardware and software than is possible with an RTOS.
There are three general techniques for virtualizing I/O:

• Passthrough uses interrupt and DMA remapping to give
guests direct access to hardware resources.

• Partial emulation implements a reduced-function virtual
hardware device with a custom device driver for the guest.

• Full emulation implements full emulation of the physical
hardware device, including the full complement of registers,
FIFOs, etc available on the hardware.

In this work, we studied passthrough and partial emulation, using
the network interface as the target I/O device. The network driver
is convenient because it is easy to benchmark using ICMP echoes
(pings), and it’s easy to compare to other virtualization platforms.

Figure 4 shows a comparison of round trip times for three dif-
ferent Ethernet driver implementations. The bare metal implemen-
tation is the unmodified driver supplied by the chip manufacturer
with no virtualization; it is our reference implementation.

The bridged implementation is a custom driver running in the
guest. Ethernet device interrupts are handled by Hermes without
being passed up to the guest. The hypervisor presents a virtualized
network interface to the guest, and they hypervisor calls the chip
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Figure 4: Comparison of ping round trip times for three Eth-
ernet driver implementations on the ARM device.

manufacturer’s driver functions to send and receive packets. The
bridged driver allows multiple guests to share the same network
interface by multiplexing incoming packets to the guests based on
MAC address.

In the passthrough implementation, the guest runs the manufac-
turer’s driver in raw form, emulated by Hermes. Ethernet device
interrupts are caught by Hermes and passed to the guest, so all
exception handling code is done in guest mode. The Ethernet device
is not shared among multiple guests in this configuration.

Surprisingly, we find that the bridged (hypervisor-assisted) Eth-
ernet driver performs far better than the passthrough. Since the
passthrough driver runs all driver code in guest mode, all privileged
instructions must be emulated by Hermes. This causes a significant
slowdown in packet handling because the Ethernet driver has to
invalidate a lot of data cache lines each time a packet is received,
which requires many privileged instructions and memory accesses.
In the bridged driver, the majority of privileged memory accesses
and privileged instructions are done by the hypervisor, so they
don’t need to be emulated.

5 RELATEDWORK
Other authors have explored real-time schedulers in hypervisors,
in particular for Linux running in Xen [11, 18, 19]. None that we
know of have been implemented onMMUless machines—even early
hypervisors ran on machines with memory management units [8].
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