
https://neilklingensmith.com/teaching/loyola/cs264-s2020/

NEIL KLINGENSMITH

CS 264: INTRO TO SYSTEMS

WHY DO YOU HAVE TO TAKE THIS STUPID CLASS

• Abstraction is good, but don’t forget reality:
• Most CS classes emphasize abstraction. Not this one.

• People don’t just write programs in one language for
one platform anymore. Real projects have lots of parts.

WHY DO YOU HAVE TO TAKE THIS STUPID CLASS

WHY DO YOU HAVE TO TAKE THIS STUPID CLASS

• People don’t just write programs in one language for
one platform anymore. Real projects have lots of parts.

• Computers are changing: parallelism is much more
important today than it was in the 90s.

• Stuff you learn here will be used in security, OS,
compilers, architecture, IoT, etc.

WHY DO YOU HAVE TO TAKE THIS STUPID CLASS

1. Have a gut feeling for what memory is.
2. Write a few bare metal programs that aren’t constrained

by an OS.
3. Understand how the computer runs your program.

MY GOALS FOR YOU

• 1st Five Weeks: Assembly Language Programming
• 2nd Five Weeks: C Programming
• Last Five Weeks: Final Project

COURSE OUTLINE

ABSTRACTIONS IN A COMPUTER

Devices

Circuits

Logic

Register Transfer Level (RTL)

Instruction Set Architecture

Hypervisor

Operating System

Libraries

Application

This Class

• Lab is a time when you can do your homework (with
help from Neil and others).

• Lab sessions will be held Thursdays from 4-6 PM in
Doyle 314.

LABS

• Book: Computer Systems: A Programmer’s Perspective
• You need a laptop with at least 8 GB RAM to run

VMWare.
• Download VMWare (or VirtualBox), link on course

website.

REQUIRED MATERIALS

• Not Required.
• Buy it if you like books.
• I have a PDF version.

THE BOOK

• No quizzes or exams. Your whole
grade is based on homework and
final project.

• No partial credit for code that
doesn’t compile.

• Start homework on Tuesday/
Wednesday so you can get help on
Thursday in lab if you get stuck.

GRADING

Category Weight

Homework 30%

Participation 10%

Progress 10%

Final Project 40%

• Do not share code.
• Do not copy code from the internet.
• You might want to save them for the end of the

semester.

DOING YOUR OWN WORK

• Each students gets five slop days to use during the
semester.

• Can’t use more than two slop days on one assignment.

SLOP DAYS

CODING STYLE

1. Every function should have a header explaining what it does. For example:
/*
 * memcpy()
 *
 * Copies count bytes from src to dest. Returns
 * the number of bytes copied or a negative number
 * in case of error.
 */
int memcpy(void *dest, void *src, unsigned int count) {

1. Every function should have a header explaining what it does.

2. Functions written in assembly language also need a stack frame diagram. For example:

; memcpy
; -------------

; | count | 2 bytes
; -------------

; | src | 2 bytes
; -------------
; | dest | 2 bytes

; -------------
; | Ret Addr | 2 bytes
; -------------

; | Caller’s BP | 2 bytes
; -------------

; Copies count bytes from src to dest. Returns...
memcpy:

CODING STYLE

1. Every function should have a header explaining what it does.
2. Functions written in assembly language also need a stack frame

diagram. For example:
3. Indent properly.

for(k = 0; k < PAGE_SIZE; k++){
 if(page->next != NULL){
page = page->next;
 }
}

CODING STYLE

NOOOOOO!!!!!!!

1. Every function should have a header explaining what it does.
2. Functions written in assembly language also need a stack frame diagram.

For example:
3. Indent properly.
4. Comment your code

for(k = 0; k < PAGE_SIZE; k++){ // Loop thru each page...
 if(page->next != NULL){ // Don’t dereference NULL ptr.

 page = page->next; // Get next element of list

 }
}

CODING STYLE

INTRO…

PROGRAMMER’S MODEL OF X86

CPU Memory

PROGRAMMER’S MODEL OF X86: INSIDE THE CPU

AX

BX

CX

DX

SI

DI

BP

SP

IP

Data Registers Address Registers

PROGRAMMER’S MODEL OF X86: INSIDE THE CPU

AX

BX

CX

DX

SI

DI

BP

SP

IP

Data Registers Address Registers

mov ax,100h
mov bx,200h
add ax,bx
cmp ax,200h

PROGRAMMER’S MODEL OF X86: INSIDE THE CPU

0100AX

BX

CX

DX

SI

DI

BP

SP

IP

Data Registers Address Registers

mov ax,100h
mov bx,200h
add ax,bx
cmp ax,200h

PROGRAMMER’S MODEL OF X86: INSIDE THE CPU

0100

0200

AX

BX

CX

DX

SI

DI

BP

SP

IP

Data Registers Address Registers

mov ax,100h
mov bx,200h
add ax,bx
cmp ax,200h

PROGRAMMER’S MODEL OF X86: INSIDE THE CPU

0300

0200

AX

BX

CX

DX

SI

DI

BP

SP

IP

Data Registers Address Registers

mov ax,100h
mov bx,200h
add ax,bx
cmp ax,200h

THE ONLY THING A COMPUTER KNOWS HOW TO DO
IS EXECUTE INSTRUCTIONS.

if(a < 5) {
 b += a;
 a++;
}

cmp ax,5
jge .not_less_than

add bx,ax

inc ax

.not_less_than:
...

• Arithmetic

• Add, subtract, multiply,
divide

• Logic

• AND, OR, NOT, XOR

• Shifts

• Left shift, right shift,
rotate, etc.

KINDS OF INSTRUCTIONS

• Control

• Branch/Jump

• Procedure calls

• Memory Accesses

• Load/store

THE ONLY THING A COMPUTER KNOWS HOW TO DO
IS EXECUTE INSTRUCTIONS.

Read
OperandsFetch Decode Execute

Memory
Access Writeback

• Download and install emu8086.
• You need Windows: use VMWare if you have a mac.
• If you need help, come to lab on Thursday.

• Sign up for GitHub if you don’t have an account.

• Send me you GitHub username. neil@cs.luc.edu

HOMEWORK

