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CS 264: INTRO TO SYSTEMS



WHY DO YOU HAVE TO TAKE THIS STUPID CLASS

• Abstraction is good, but don’t forget reality: 
• Most CS classes emphasize abstraction. Not this one.



• People don’t just write programs in one language for 
one platform anymore. Real projects have lots of parts.
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WHY DO YOU HAVE TO TAKE THIS STUPID CLASS



• People don’t just write programs in one language for 
one platform anymore. Real projects have lots of parts. 

• Computers are changing: parallelism is much more 
important today than it was in the 90s. 

• Stuff you learn here will be used in security, OS, 
compilers, architecture, IoT, etc.

WHY DO YOU HAVE TO TAKE THIS STUPID CLASS





1. Have a gut feeling for what memory is. 
2. Write a few bare metal programs that aren’t constrained 

by an OS. 
3. Understand how the computer runs your program.

MY GOALS FOR YOU



• 1st Five Weeks: Assembly Language Programming 
• 2nd Five Weeks: C Programming 
• Last Five Weeks: Final Project

COURSE OUTLINE



ABSTRACTIONS IN A COMPUTER

Devices
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Register Transfer Level (RTL)

Instruction Set Architecture
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Operating System

Libraries

Application

This Class



• Lab is a time when you can do your homework (with 
help from Neil and others). 

• Lab sessions will be held Thursdays from 4-6 PM in 
Doyle 314.

LABS



• Book: Computer Systems: A Programmer’s Perspective 
• You need a laptop with at least 8 GB RAM to run 

VMWare. 
• Download VMWare (or VirtualBox), link on course 

website.

REQUIRED MATERIALS



• Not Required. 
• Buy it if you like books. 
• I have a PDF version.

THE BOOK



• No quizzes or exams. Your whole 
grade is based on homework and 
final project. 

• No partial credit for code that 
doesn’t compile. 

• Start homework on Tuesday/
Wednesday so you can get help on 
Thursday in lab if you get stuck.

GRADING

Category Weight

Homework 30%

Participation 10%

Progress 10%

Final Project 40%



• Do not share code. 
• Do not copy code from the internet. 
• You might want to save them for the end of the 

semester.

DOING YOUR OWN WORK



• Each students gets five slop days to use during the 
semester. 

• Can’t use more than two slop days on one assignment.

SLOP DAYS



CODING STYLE

1. Every function should have a header explaining what it does. For example: 
/* 
 * memcpy() 
 * 
 * Copies count bytes from src to dest. Returns 
 * the number of bytes copied or a negative number 
 * in case of error. 
 */ 
int memcpy(void *dest, void *src, unsigned int count) { 



1. Every function should have a header explaining what it does.  

2. Functions written in assembly language also need a stack frame diagram. For example: 

; memcpy
;  -------------

; | count       | 2 bytes
;  -------------

; | src         | 2 bytes
;  -------------
; | dest        | 2 bytes

;  -------------
; | Ret Addr    | 2 bytes
;  -------------

; | Caller’s BP | 2 bytes
;  -------------

; Copies count bytes from src to dest. Returns...
memcpy:

CODING STYLE



1. Every function should have a header explaining what it does.  
2. Functions written in assembly language also need a stack frame 

diagram. For example: 
3. Indent properly. 

for(k = 0; k < PAGE_SIZE; k++){
    if(page->next != NULL){
page = page->next;
    }
}

CODING STYLE

NOOOOOO!!!!!!!



1. Every function should have a header explaining what it does.  
2. Functions written in assembly language also need a stack frame diagram. 

For example: 
3. Indent properly. 
4. Comment your code 

for(k = 0; k < PAGE_SIZE; k++){ // Loop thru each page...
    if(page->next != NULL){ // Don’t dereference NULL ptr.

        page = page->next; // Get next element of list

    }
}

CODING STYLE



INTRO…



PROGRAMMER’S MODEL OF X86

CPU Memory



PROGRAMMER’S MODEL OF X86: INSIDE THE CPU
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mov ax,100h
mov bx,200h
add ax,bx
cmp ax,200h
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PROGRAMMER’S MODEL OF X86: INSIDE THE CPU
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THE ONLY THING A COMPUTER KNOWS HOW TO DO 
IS EXECUTE INSTRUCTIONS.

if( a < 5 ) {
  b += a;
  a++;
}

cmp ax,5
jge .not_less_than

add bx,ax

inc ax

.not_less_than:
...



• Arithmetic 

• Add, subtract, multiply, 
divide 

• Logic 

• AND, OR, NOT, XOR 

• Shifts 

• Left shift, right shift, 
rotate, etc.

KINDS OF INSTRUCTIONS

• Control 

• Branch/Jump 

• Procedure calls 

• Memory Accesses 

• Load/store



THE ONLY THING A COMPUTER KNOWS HOW TO DO 
IS EXECUTE INSTRUCTIONS.

Read 
OperandsFetch Decode Execute

Memory 
Access Writeback



• Download and install emu8086. 
• You need Windows: use VMWare if you have a mac. 
• If you need help, come to lab on Thursday. 

• Sign up for GitHub if you don’t have an account. 

• Send me you GitHub username. neil@cs.luc.edu

HOMEWORK


